The thermal vibration study of magnetostrictive functionally graded material (FGM) plate under rapid heating is computed by using the generalized differential quadrature (GDQ) method. The dynamic equilibrium differential equations with displacements and shear rotations of magnetostrictive FGM plate under the rapid heating are normalized and discretized into the dynamic discretized equations. The computational solutions of magnetostrictive FGM plate with four simply supported edges are obtained. Some parametric effects on the magnetostrictive FGM plates are analyzed, they are: thickness of mounted magnetostrictive layer, control gains of the proportional negative derivative, rapid heating flux values, and power law index values of FGM plate.

References

1.
Birman
,
V.
, and
Byrd
,
L. W.
, 2007, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
ASME Trans. J. Appl. Mech. Reviews
,
60
, pp.
195
216
.
2.
Shen
,
H. S.
, 2007, “
Nonlinear Thermal Bending Response of FGM Plates Due to Heat Condition
,”
Composites, Part B
,
38
, pp.
201
215
.
3.
Yeilaghi-Tamijani
,
A.
,
Mirzaeifar
,
R.
,
Ohadi
,
A. R.
, and
Eslami
,
M. R.
, 2006, “
Vibration Control of FGM Plate With Piezoelectric Sensors and Actuators Using Higher Order Shear Deformation Theory
,”
ASME Conference Proceedings: ESDA2006, Dynamic Systems and Controls
,
3,
pp.
565
572
.
4.
Chi
,
S. H.
, and
Chung
,
Y. L.
, 2006, “
Mechanical Behavior of Functionally Graded Material Plates Under Transverse Load, Part I: Analysis
,”
Int. J. Solids Struct.
,
43
, pp.
3657
3674
.
5.
Pradhan
,
S. C.
, 2005, “
Vibration Suppression of FGM Shells Using Embedded Magnetostrictive Layers
,”
Int. J. Solids Struct.
,
42
, pp.
2465
2488
.
6.
Hong
,
C. C.
, 2010, “
Transient Responses of Magnetostrictive Plates by Using the GDQ Method
,”
Eur. J. Mech. A/Solids
,
29
, pp.
1015
1021
.
7.
Hong
,
C. C.
, 2009, “
Transient Responses of Magnetostrictive Plates without Shear Effects
,”
Int. J. Comput. Eng. Sci.
,
47
, pp.
355
362
.
8.
Hong
,
C. C.
, 2009, “
Rapid Heating Induced Vibration of a Laminated Shell with the GDQ Method
,”
The Open Mechanics J.
,
3
, pp.
1
5
.
9.
Hong
,
C. C.
, 2007, “
Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method
,”
The Open Mechanics J.
,
1
, pp.
29
37
.
10.
Hong
,
C. C.
,
Liao
,
H. W.
,
Lee
,
L. T.
,
Ke
,
J. B.
, and
Jane
,
K. C.
, 2005, “
Thermally Induced Vibration of a Thermal Sleeve With the GDQ Method
,”
Int. J. Mech. Sci.
,
47
, pp.
1789
1806
.
11.
Lambros
,
J.
,
Narayanaswamy
,
A.
,
Santare
,
M. H.
, and
Anlas
,
G.
, 1999, “
Manufacture and Testing of a Functionality Graded Material
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
488
493
.
12.
Yoshimura
,
M.
,
Onoki
,
T.
,
Fukuhara
,
M.
,
Wang
,
X.
,
Nakata
,
K.
, and
Kuroda
,
T.
, 2008, “
Formation of Growing Integrated Layer [GIL] Between Ceramics and Metallic Materials for Improved Adhesion Performance
,”
Mater. Sci. Eng., B
,
148
, pp.
2
6
.
13.
Hong
,
C. C.
, and
Jane
,
K. C.
, 2003, “
Shear Deformation in Thermal Vibration Analysis of Laminated Plates by the GDQ Method
,”
Int. J. Mech. Sci.
,
45
, pp.
21
36
.
14.
Yang
,
P. C.
,
Norris
,
C. H.
, and
Stavsky
,
Y.
, 1966, “
Elastic Wave Propagation in heterogeneous Plates
,”
Int. J. Solids Struct.
,
2
, pp.
665
684
.
15.
Nguyen
,
T. K.
,
Sab
,
K.
, and
Bonnet
,
G.
, 2008, “
First-Order Shear Deformation Plate Models for Functionally Graded Materials
,”
Composite Structures
,
83
, pp.
25
36
.
16.
Lee
,
S. J.
,
Reddy
,
J. N.
, and
Rostam-Abadi
,
F.
, 2004, “
Transient Analysis of Laminated Composite Plates with Embedded Smart-Material Layers
,”
Finite Elements in Analysis and Design
,
40
, pp.
463
483
.
17.
Tanigawa
,
Y.
, 1995, “
Some Basic Thermoelastic Problems for Nonhomogeneous Structural Materials
,”
ASME Appl. Mech. Rev.
,
48
, pp.
287
300
.
18.
Bert
,
C. W.
,
Jang
,
S. K.
, and
Striz
,
A. G.
, 1989, “
Nonlinear Bending Analysis of Orthotropic Rectangular Plates by the Method of Differential Quadrature
,”
Comput. Mech.
,
5
, pp.
217
226
.
19.
Shu
,
C.
, and
Du
,
H.
, 1997, “
Implementation of Clamped and Simply Supported Boundary Conditions in the GDQ Free Vibration Analyses of Beams and Plates
,”
Int. J. Solids Struct.
,
34
, pp.
819
835
.
20.
Lee
,
S. J.
, and
Reddy
,
J. N.
, 2005, “
Non-Linear Response of Laminated Composite Plates under Thermomechanical Loading
,”
Int. J. Non-Linear Mech.
,
40
, pp.
971
985
.
21.
Whitney
,
J. M.
,, 1987
Structural Analysis of Laminated Anisotropic Plates
,
Technomic Publishing Company, Inc.
,
Lancaster
.
22.
Yao
,
D.
, and
Kim
,
B.
, 2003, “
Developing Rapid Heating and Cooling Systems Using Pyrolytic Graphite
,”
Appl. Therm. Eng.
,
23
, pp.
341
352
.
23.
Hetnarski
,
R. B.
, 1987,
Thermal Stresses II
,
Elsevier
,
NY
, pp.
332
336
.
24.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
2nd ed.,
Oxford University
,
London
.
25.
Reddy
,
J. N.
, and
Chin
,
C. D.
, 1998, “
Thermoelastical Analysis of Functionally Geaded Cylinders and Plate
,”
J. Therm. Stresses
,
21
, pp.
593
626
.
26.
Shariyat
,
M.
, 2008, “
Dynamic Buckling of Suddenly Loaded Imperfect Hybrid FGM Cylindrical Shells with Temperature Dependent Material Properties Under Thermo-Electromechanical Loads
,”
J. Mech. Sci. Technol.
,
50
(
12
), pp.
1561
1571
.
27.
Whitney
,
J. M.
, 1973, “
Shear Correction Factors for Orthotripic Laminates Under Static Loading
,”
J. Appl. Mech.
,
40
, pp.
302
304
.
You do not currently have access to this content.