This paper deals with a study on the active constrained layer damping (ACLD) of geometrically nonlinear vibrations of functionally graded (FG) laminated composite plates. The constraining layer of the ACLD treatment is considered to be made of the vertically/obliquely reinforced 1-3 piezoelectric composites (PZCs). The substrate FG laminated composite plate is composed of generally orthotropic FG layers. The generally orthotropic FG layer is a fiber reinforced composite layer in which the fibers are longitudinally aligned in the plane parallel to the top and bottom surfaces of the layer and their orientation angle is assumed to vary in the thickness direction according to a simple power-law in order to make it as a graded layer only in the thickness direction. The constrained viscoelastic layer of the ACLD treatment is modeled by implementing the Golla-Hughes-McTavish (GHM) method. Based on the first order shear deformation theory, the finite element (FE) model is developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite plates integrated with a patch of such ACLD treatment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the vertically/obliquely reinforced 1-3 PZC material for active control of geometrically nonlinear vibrations of FG laminated composite plates. The effect of piezoelectric fiber orientation in the active 1-3 PZC constraining layer on the damping characteristics of the overall FG laminated composite plates is also investigated.

References

References
1.
Koizumi
,
M.
, 1993, “
concept of FGM
,”
Ceram. Trans.
,
34
, pp.
3
10
.
2.
Mian
,
A. M.
, and
Spencer
,
A. J. M.
, 1998, “
Exact Solutions for Functionally Graded and Laminated Elastic Materials
,”
J Mech. Phys. Solids
,
46
, pp.
2283
2295
.
3.
Batra
,
R. C.
, and
Vel
,
S. S.
, 2001, “
Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates
,”
AIAA J.
,
40
, pp.
1421
1433
.
4.
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1999, “
Vibration of Functionally Graded Cylindrical Shells
,”
Int. J.Mech. Sci.
,
41
, pp.
309
324
.
5.
Vel
,
S. S.
, and
Batra
,
R. C.
, 2003, “
Three-Dimensional Analysis of Transient Thermal Stresses in Functionally Graded Plates
,”
Int. J. Solids Struct.
,
40
, pp.
7181
7196
.
6.
Yang
,
J.
, and
Shen
,
H. S.
, 2001, “
Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,”
Compos. Struct.
,
54
, pp.
497
508
.
7.
Praveen
,
G. N.
, and
Reddy
,
J. N.
, 1998, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic Metal Plates
,”
Int. J. Solids Struct.
,
35
, pp.
4457
4476
.
8.
Reddy
,
J. N.
, 2000, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
,
47
, pp.
663
684
.
9.
Woo
,
J.
, and
Meguid
,
S. A.
, 2001, “
Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,”
Int. J. Solids Struct.
,
38
, pp.
7409
7421
.
10.
Shen
,
H. S.
, 2002, “
Nonlinear Bending Response of Functionally Graded Plates Subjected to Transverse Loads and in Thermal Environments
,”
Int. J. Mech. Sci.
,
44
, pp.
561
584
.
11.
Bailey
,
T.
, and
Hubbard
,
J. E.
, 1985, “
Distributed Piezoelectric Polymer Active Vibration Control of a Cantilever Beam
,”
J. Guid., Control Dyn.
,
8
, pp.
605
611
.
12.
Miller
,
S. E.
, and
Hubbard
,
J. E.
, 1987, “
Observability of a Bernoulli-Euler Beam Using PVF2 as a Distributed Sensor
,” MIT Draper Laboratory Report, July 1, 1987.
13.
Liew
,
K. M.
,
He
,
X. Q.
,
Ng
,
T. Y.
, and
Kitipornchai
,
S.
, 2003, “
Finite Element Piezo-Thermo-Elasticity Analysis and Active Control of FGM Plates with Integrated Piezoelectric Sensors and Actuators
,”
Computat. Mech.
,
31
, pp.
350
358
.
14.
Yang
,
J.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2004, “
Non-Linear Analysis of Thermo-Electro-Mechanical Behavior of Shear Deformable FGM Plates with Piezoelectric Actuators
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
1605
1632
.
15.
Huang
,
X. -L. -L.
, and
Shen
,
H. -S. -S.
, 2006, “
Vibration and Dynamic Response of Functionally Graded Plates with Piezoelectric Actuators in Thermal Environments
,”
J. Sound Vib.
,
289
, pp.
25
53
.
16.
Baz
,
A.
, and
Ro
,
J.
, 1995, “
Optimum Design And Control Of Active Constrained Layer Damping
,”
ASME J. Vib. Acoust.
,
117B
, pp.
135
144
.
17.
Baz
,
A.
, and
Ro
,
J.
, 1995, “
Vibration Control Of Plates with Active Constrained Layer Damping
,”
Smart Mater. Struct.
,
5
, pp.
272
280
.
18.
Ray
,
M. C.
, and
Baz
,
A.
, 1997, “
Optimization of Energy Dissipation of Active Constrained Layer Damping Treatment of Plates
,”
J. Sound Vib.
,
208
, pp.
391
406
.
19.
Liao
,
W. H.
, and
Wang
,
K. W.
, 1998, “
Characteristics Of Enhanced Active Constrained Layer Damping Treatment With Edge Elements, Part I: Finite Element Model Development And Validation
,”
ASME J. Vibr. Acoust.
,
120
(
4
), pp.
886
893
.
20.
Liao
,
W. H.
, and
Wang
,
K. W.
, 1998, “
Characteristics of Enhanced Active Constrained Layer Damping Treatment with Edge Elements, Part II: System Analysis
,”
ASME J. Vibr. Acoust.
,
120
(
4
), pp.
894
900
.
21.
Lam
,
M. J.
,
Inman
,
D. J.
, and
Saunders
,
W. R.
, 2000, “
Hybrid Damping Models Using the Golla-Hughes-Mctavish Method with Internally Balanced Model Reduction and Output Feedback
,”
Smart Mater. Struct.
,
9
, pp.
362
371
.
22.
Lee
,
U.
, and
Kim
,
J.
, 2001, “
Spectral Element Modeling for the Beams Treated with Active Constrained Layer Damping
,”
Int. J. Solids Struct.
,.
38
(
32-33
), pp.
5679
5702
.
23.
Ray
,
M. C.
,
Oh
,
J.
, and
Baz
,
A.
, 2001, “
Active Constrained Layer Damping of Thin Cylindrical Panels
,”
J. Sound Vib.
,
240
, pp.
921
935
.
24.
Lim
,
Y. -H. -H.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
, 2002, “
Closed-Loop Finite Element Modeling Of Active Constrained Layer Damping In The Time Domain Analysis
,”
Smart Mater. Struct.
,
11
, pp.
89
97
.
25.
Shi
,
Y.
,
Hua
,
H.
, and
Sol
,
H.
, 2004, “
The Finite Element Analysis and Experimental Study of Beams with Active Constrained Layer Damping Treatments
,”
J. Sound Vib.
,
278
, pp.
343
363
.
26.
Smith
,
W. A.
, and
Auld
,
B. A.
, 1991, “
Modeling 1-3 Composite Piezoelectrics: Thickness Mode Oscillations
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
31
, pp.
40
47
.
27.
Piezocomposites, Materials Systems Inc., 543 Great Road, Littleton, MA 01460.
28.
Ray
,
M. C.
, and
Pradhan
,
A. K.
, 2006, “
The Performance of Vertically Reinforced 1-3 Piezoelectric Composites in Active Damping of Smart Structures
,”
Smart Mater. Struct.
,
15
, pp.
631
641
.
29.
Ray
,
M. C.
, and
Pradhan
,
A. K.
, 2007, “
On the Use of Vertically Reinforced 1-3 Piezoelectric Composites for Hybrid Damping of Laminated Composite Plates
,”
Mech. Adv. Mater. Struct.
,
14
, pp.
245
261
.
30.
Panda
,
S.
, and
Ray
,
M. C.
, 2008, “
Geometrically Nonlinear Analysis Of Smart Functionally Graded Plates Integrated With A Layer Of Vertically Reinforced 1-3 Piezoelectric Composite
,”
Acta Mech
.
31.
Panda
,
S.
, and
Ray
,
M. C.
, 2008, “
Finite Element Analysis For Geometrically Nonlinear Deformations Of Smart Functionally Graded Plates Using Vertically Reinforced 1-3 Piezoelectric Composite
,”
Int. J. Mech. Mater. Design
.
32.
Golla
,
D. F.
, and
Hughes
,
P. C.
, 1985, “
Dynamics Of Viscoelastic Structures: A Time-Domain, Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
, pp.
897
906
.
33.
McTavish
,
D. J.
, and
Hughes
,
P. C.
, 1993, “
Modeling Of Linear Viscoelastic Space Structures
,”
ASME J. Vib. Acoust.
,
115
, pp.
103
133
.
34.
Reddy
,
J. N.
,
An Introduction to Nonlinear Finite Element Analysis
(
Oxford University Press
,
New York
, 2004).
35.
Christensen
,
R. M.
,
Theory of Viscoelasticity: An Introduction
,
2nd ed.
(
Academic
,
New York
, 1982).
36.
Tiersten
,
H. F.
,
Linear Piezoelectric Plate Vibrations
(
Plenum Press
,
New York
, 1969).
37.
Kim
,
T. -W. -W.
, and
Kim
,
J. -H. -H.
, 2002, “
Nonlinear Vibration Of Viscoelastic Laminated Composite Plates
,”
Int. J. Solids Struct.
,
39
, pp.
2857
2870
.
38.
Benmedakhene
,
S.
,
Kenane
,
M.
, and
Benzeggagh
,
M. L.
, 1999, “
Initiation And Growth Of Delamination In Glass/Epoxy Composites Subjected To Static And Dynamic Loading By Acoustic Emission Monitoring
,”
Compos. Sci. Technol.
,
59
, pp.
201
208
.
You do not currently have access to this content.