This paper presents a dual-mode magnetorheological (MR) fluid mount. Combining the fluid’s flow and squeeze modes of operation gives this MR mount a unique possibility for varying dynamic stiffness and damping. Details on the design of the internal structure of the mount and the magnetic circuit are provided. Simulation and experimental results are presented to show the effectiveness of the magnetic circuit. A mathematical model that combines the behavior of the fluid and the elastomeric parts and takes into account the magnetic activation of the fluid is used to gauge the effect of design parameters on the isolation characteristics of the mount. Experimental results show that in the proposed design, the dynamic stiffness of the mount may be varied over a wide range of frequencies making the mount a unique and versatile vibration isolation device for cases where input excitation occurs over a wide range of frequencies.

References

1.
Yu
,
Y.
,
Naganathan
,
N. G.
, and
Dukkipati
,
R. V.
, 2001,
“A Literature Review of Automotive Vehicle Engine Mounting Systems,”
Mech. Mach. Theory
,
36
(
1
), pp.
123
142
.
2.
Singh
,
R.
,
Kim
,
G.
, and
Ravindra
,
P. V.
, 1992,
“Linear Analysis of Automotive Hydro-Mechanical Mount With Emphasis on Decoupler Characteristics,”
J. Sound Vib.
,
158
(
2
), pp.
219
243
.
3.
Carlson
,
D.
,
Catanzarite
,
D.
, and
Clair
,
K. S.
, 1995, “
Commercial Magneto Rheological Fluid Devices
,”
Proceedings of the 5th International Conference on ER Fluids
,
Magneto-Rheological Fluids and Related Phenomenon
,
Sheffield, United Kingdom
, July 10–14.
4.
Ahn
,
Y.
,
Ahmadian
,
M.
, and
Morishita
,
S.
, 1999,
“On the Design and Development of a Magneto-Rheological Mount,”
Veh. Syst. Dyn.
,
32
, pp.
199
216
.
5.
Ahmadian
,
M.
, and
Ahn
,
Y.
, 1999,
“Performance Analysis of Magneto-Rheological Mounts,”
J. Intell. Mater. Syst. Struct.
,
10
, pp.
248
256
.
6.
Stelzer
,
G. J.
,
Schulz
,
M. J.
,
Kim
,
J.
, and
Allemang
,
R. J.
, 2003,
“A Magnetorheological Semi-Active Isolator to Reduce Noise and Vibration Transmissibility in Automobiles,”
J. Intell. Mater. Syst. Struct.
,
14
, pp.
743
765
.
7.
Ahn
,
Y.
,
Yang
,
B.
,
Ahmadian
,
M.
, and
Morishita
,
S.
, 2005,
“A Small-Sized Variable-Damping Mount Using Magnetorheological Fluid,”
J. Intell. Mater. Syst. Struct.
,
16
(
2
), pp.
127
133
.
8.
Hong
,
S. R.
,
Choi
,
S. B.
,
Jung
,
W. J.
, and
Jeong
,
W. B.
, 2002,
“Vibration Isolation of Structural Systems Using Squeeze Mode ER Mounts,”
J. Intell. Mater. Syst. Struct.
,
13
, pp.
421
424
.
9.
Hong
,
S. R.
,
Choi
,
S. B.
, and
Lee
,
D. Y.
, 2006,
“Comparison of Vibration Control Performance Between Flow and Squeeze Mode ER Mounts: Experimental Work,”
J. Sound Vib.
,
291
, pp.
740
748
.
10.
Barber
,
D. E.
, and
Carlson
,
D. J.
, 2008,
“Performance Characteristics of Prototype MR Engine Mounts Containing LORD Glycol MR Fluids,”
ERMR 2008 Conference
,
Dresden
,
Germany
.
11.
Arzanpour
,
S.
, and
Golnaraghi
,
M. F.
, 2008,
“A Novel Semi-Active Magnetorheological Bushing Design for Variable Displacement Engines,”
J. Intell. Mater. Syst.Struct.
,
19
, pp.
989
1003
.
12.
Arzanpour
,
S.
, and
Golnaraghi
,
M. F.
, 2008,
“Development of a Bushing With an Active Compliance Chamber for Variable Displacement Engines,”
Veh. Syst. Dyn.
,
46
(
10
), pp.
867
887
.
13.
Arzanpour
,
S.
, and
Golnaraghi
,
M. F.
, 2010,
“Development of an Active Compliance Chamber to Enhance the Performance of Hydraulic Bushings,”
ASME J. Vibr. Acoust.
,
132
, pp.
110
118
.
14.
Woods
,
R. I.
, and
Lawrence
,
K. L.
, 1997,
Modeling and Simulation of Dynamic Systems
,
Prentice Hall
,
London
.
15.
Srinivasan
,
A. V.
, and
McFarland
,
M. D.
, 2001,
Smart Structures: Analysis and Design,
Cambridge University Press
,
New York.
16.
Adiguna
,
H.
,
Tiwari
,
M.
,
Singh
,
R.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
, 2003,
“Transient Response of a Hydraulic Engine Mount,”
J. Sound Vib.
,
268
, pp.
217
248
.
You do not currently have access to this content.