This paper investigates passive and semi-active vibration control using fluidic flexible matrix composites (F2MC). F2MC tubes filled with fluid and connected to an accumulator through a fixed orifice can provide damping forces in response to axial strain. If the orifice is actively controlled, the stiffness of F2MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2MC tube kinematically relates the internal volume to axial strain. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. With a closed valve, however, the high bulk modulus fluid resists volume change and produces high axial stiffness. The equations of motion of an F2MC-mass system are derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. A reduced-order model for operation with either a fully open or fully closed valve motivates the development of a zero vibration (ZV) controller that suppresses vibration in finite time. Coupling of a fluid-filled F2MC tube to a pressurized accumulator through a fixed orifice is shown to provide significant passive damping. The open-valve orifice size is optimized for optimal passive, skyhook, and ZV controllers by minimizing the integral time absolute error cost function. Simulation results show that the optimal open valve orifice provides a damping ratio of 0.35 compared with no damping in closed-valve case. The optimal ZV controller outperforms optimal passive and skyhook controllers by 32.9% and 34.2% for impulse and 34.7% and 60% for step response, respectively. Theoretical results are confirmed by experiments that demonstrate the improved damping provided by optimal passive control F2MC and fast transient response provided by semi-active ZV control.

References

References
1.
Alkhatib
,
R.
, and
Golnaraghi
,
M. F.
, 2003, “
Active Structural Vibration Control: A Review
,”
Shock Vib. Dig.
,
35
, pp.
367
383
.
2.
Sun
,
J.
,
Jolly
,
M.
, and
Norris
,
M.
, 1995, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Mech. Des.
,
117B
, pp.
234
242
.
3.
Jalili
,
N.
, 2002, “
A Comparative Study and Analysis of Semi-Active Vibration-Control Systems
,”
ASME J. Vibr. Acoust.
,
124
(
4
), pp.
593
605
.
4.
Franchek
,
M.
,
Ryan
,
M.
, and
Bernhard
,
R.
, 1996, “
Adaptive-Passive Vibration Control
,”
J. Sound Vib.
,
189
(
5
), pp.
565
585
.
5.
Kemp
,
J.
, and
Clark
,
R.
, 2002, “
Optimal Hybrid Active/Passive Vibration Control Design
,”
Proc. SPIE
,
4693
, pp.
440
450
.
6.
Dadfarnia
,
M.
,
Jalili
,
N.
,
Xian
,
B.
, and
Dawson
,
D.
, 2004, “
A Lyapunov-Based Piezoelectric Controller for Flexible Cartesian Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
2
), pp.
347
358
.
7.
Ramaratnam
,
A.
, and
Jalili
,
N.
, 2006, “
A Switched Stiffness Approach for Structural Vibration Control: Theory and Real-Time Implementation
,”
J. Sound Vib.
,
291
(
1
), pp.
258
274
.
8.
Frahm
,
H.
, 1911, “
Device for Damping Vibrations of Bodies
,” U.S. Patent No. 989,958.
9.
Winthrop
,
M. F.
, and
Cobb
,
R. G.
, 2003, “
Survey of State-of-the-Art Vibration Isolation Research and Technology for Space Applications
,”
Proc. SPIE
,
5052
, pp.
13
56
.
10.
Tsai
,
M. S.
, and
Wang
,
K. W.
, 1996, “
Control of a Ring Structure With Multiple Active-Passive Hybrid Piezoelectrical Networks
,”
Smart Mater. Struct.
,
5
, pp.
695
702
.
11.
Lai
,
J. S.
, and
Wang
,
K. W.
, 1996, “
Parametric Control of Structural Vibrations via Adaptable Stiffness Dynamic Absorbers
,”
ASME J. Vibr. Acoust.
,
118
(
1
), pp.
41
47
.
12.
Ormondroyd
,
J.
, and
Den Hartog
,
J.
, 1928, “
The Theory of the Dynamic Vibration Absorber
,”
ASME Trans. J. Appl. Mech.
,
50
(
17
), pp.
9
15
.
13.
Wang
,
K. W.
,
Kim
,
Y. S.
, and
Shea
,
D. B.
, 1994, “
Structural Vibration Control via ER-Fluid-Based Actuators With Adaptive Viscous and Frictional Damping
,”
J. Sound Vib.
,
177
(
2
), pp.
227
237
.
14.
Lee
,
J. K.
, and
Clark
,
W. W.
, 1999, “
Semi-Active Control of Flexural Vibrations With an MR Fluid Actuator
,”
Proc. SPIE
,
3672
, pp.
167
174
.
15.
Dyke
,
S.
,
Spencer
,
B.
,
Sain
,
M.
, and
Carlson
,
J.
, 1996, “
Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction
,”
J. Sound Vib.
,
5
(
5
), pp.
565
575
.
16.
Shen
,
Y.
,
Golnaraghi
,
M.
, and
Heppler
,
G.
, 2006, “
Semi-Active Vibration Control Schemes for Suspension Systems Using Magnetorheological Dampers
,”
J. Vib. Control
,
12
(
1
), pp.
3
24
.
17.
Choi
,
Y.
,
Wereley
,
N.
, and
Jeon
,
Y.
, 2005, “
Semi-Active Vibration Isolation Using Magnetorheological Isolators
,”
J. Aircr.
,
42
(
5
), pp.
1244
1251
.
18.
Oh
,
H. U.
,
Onoda
,
J.
, and
Minesugi
,
K.
, 2004, “
Semiactive Isolator With Liquid-Crystal Type ER Fluid for Momentum-Wheel Vibration Isolation
,”
ASME J. Vibr. Acoust.
,
126
(
2
), pp.
272
277
.
19.
Ruzzene
,
M.
, and
Baz
,
A.
, 2000, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vibr. Acoust.
,
122
, pp.
151
159
.
20.
Wang
,
K. W.
,
Lai
,
J. S.
, and
Yu
,
W. K.
, 1996, “
An Energy-Based Parametric Control Approach for Structural Vibration Suppression via Semi-Active Piezoelectric Networks
,”
ASME J. Vibr. Acoust.
,
118
(
3
), pp.
505
509
.
21.
Larson
,
G. D.
, 1996, “
The Analysis and Realization of a State Switched Acoustic Transducer
,” Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology.
22.
Clark
,
W. W.
, 2000, “
Vibration Control With State-Switched Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
263
271
.
23.
Cunefare
,
K. A.
,
De Rosa
,
S.
,
Sadegh
,
N.
, and
Larson
,
G.
, 2000, “
State-Switched Absorber for Semi-Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
300
310
.
24.
Philen
,
M.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K.
,
Rahn
,
C.
,
Zydney
,
A.
, and
Bakis
,
C.
, 2007, “
Fibrillar Network Adaptive Structure With Ion-Transport Actuation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
4
), pp.
323
334
.
25.
Caldwell
,
D.
,
Medrano-Cerda
,
G.
, and
Goodwin
,
M.
, 1993, “
Braided Pneumatic Actuator Control of a Multi-Jointed Manipulator
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
, Vol.
1
, pp.
423
428
.
26.
Chou
,
C.
, and
Hannaford
,
B.
, 1996, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
27.
Pritts
,
M.
, and
Rahn
,
C.
, 2004, “
Design of an Artificial Muscle Continuum Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
4743
4746
.
28.
Kothera
,
C.M. Jangid, S. J.
,
, and
Wereley
,
N.
, 2009, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.
29.
Liu
,
W.
, and
Rahn
,
C.
, 2003, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.
30.
Shan
,
Y.
,
Philen
,
M.
,
Bakis
,
C.
,
Wang
,
K.
, and
Rahn
,
C.
, 2006, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
3053
3063
.
31.
Philen
,
M.
,
Shan
,
Y.
,
Bakis
,
C.
,
Wang
,
K.
, and
Rahn
,
C.
, 2006, “
Variable Stiffness Adaptive Structures Utilizing Hydraulically Pressurized Flexible Matrix Composites With Valve Control
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Vol.
9
, pp.
6387
6397
.
32.
Shan
,
Y.
,
Philen
,
M.
,
Lotfi
,
A.
,
Li
,
S.
,
Bakis
,
C. E.
,
Rahn
,
C.
, and
Wang
,
K.
, 2009, “
Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites
,”
J. Intell. Mater. Syst. Struct.
,
20
(
4
), pp.
443
456
.
33.
Philen
,
M.
, 2009, “
On the Applicability of Fluidic Flexible Matrix Composite Variable Impedance Materials for Prosthetic and Orthotic Devices
,”
Smart Mater. Struct.
,
18
(
10
), p.
104023
.
34.
Lotfi-Gaskarimahalle
,
A.
,
Shan
,
Y.
,
Li
,
S.
,
Rahn
,
C. D.
,
Bakis
,
C. E.
, and
Wang
,
K. W.
, 2008, “
Stiffness Shaping for Zero Vibration Fluidic Flexible Matrix Composites
,” ASME Paper No. SMASIS08-501.
35.
Lekhnitskii
,
S.
, 1963, “
Theory of Elasticity of an Anisotropic Body
,” Holden-Day, San Francisco, CA.
36.
Lotfi-Gaskarimahalle
,
A.
, 2009, “
Vibration Control of Distributed Parameter Systems and Fluidic Flexible Matrix Composites
”, Ph.D. thesis, Pennsylvania State University, University Park, PA.
37.
Timoshenko
,
S.
, 1983,
History of Strength of Materials
,
Dover, Mineola, NY
.
38.
White
,
F.
, 2002,
Fluid Mechanics
,
McGraw-Hill, New York
.
You do not currently have access to this content.