In this article, by combining the assumed mode shape method and the Lagrange’s equations, a new and efficient method is introduced to obtain a closed-form finite dimensional dynamic model for planar Flexible-link Flexible-joint Manipulators (FFs). To derive the dynamic model, this new method separates (disassembles) a FF into two subsystems. The first subsystem is the counterpart of the FF but without joints’ flexibilities and rotors’ mass moment of inertias; this subsystem is referred to as a Flexible-link Rigid-joint manipulator (FR). The second subsystem has the joints’ flexibilities and rotors’ mass moment of inertias, which are excluded from the FR; this subsystem is called Flexible-Inertia entities (FI). While the method proposed here employs the Lagrange’s equations, it neither requires the derivation of the lengthy Lagrangian function nor its complex derivative calculations. This new method only requires the Lagrangain function evaluation and its derivative calculations for a Single Flexible link manipulator on a Moving base (SFM). By using the dynamic model of a SFM and the Lagrange multipliers, the dynamic model of the FR is first obtained in terms of the dependent generalized coordinates. This dynamic model is then projected into the tangent space of the constraint manifold by the use of the natural orthogonal complement of the Jacobian constraint matrix. Therefore, the dynamic model of the FR is obtained in terms of the independent generalized coordinates and without the Lagrange multipliers. Finally, the joints’ flexibilities and rotors’ mass moment of inertias, which are included in the FI, are added to the dynamic model of the FR and a closed-form dynamic model for the FF is derived. To verify this new method, the results of simulation examples, which are obtained from the proposed method, are compared with those of a full-nonlinear finite element analysis, where the comparisons indicate sound agreement

References

References
1.
Vakil
,
M.
, 2008, “
Dynamics and Control of Flexible Manipulators
,” Ph.D. thesis, University of Saskatchewan, Saskatoon, SK, Canada.
2.
Sweet
,
L.
, and
Good
,
M.
, 1985, “
Redefinition of the Robot Motion-Control Problem
,”
IEEE Control Syst. Mag.
,
5
(
3
), pp.
18
25
.
3.
Salmasi
,
H.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
, 2010, “
A Maneuver Control Strategy for Flexible-Joint Manipulators With Joint Dry Friction
,”
Robotica
,
28
(
4
), pp.
621
663
.
4.
Endo
,
T.
,
Matsuno
,
F.
, and
Kawasaki
,
H.
, 2009, “
Simple Boundary Cooperative Control of Two One-Link Flexible Arms for Grasping
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2470
2476
.
5.
Bathe
,
K. J.
, 1996,
Finite Element Procedure
,
Prentice-Hall
,
Upper Saddle River, NJ
.
6.
Trindade
,
M. A.
, and
Sampaio
,
R.
, 2002, “
Dynamic of Beams Undergoing Large Rotations Accounting for Arbitrary Axial Deformation
,”
J. Guid. Control Dyn.
,
25
(
4
), pp.
634
643
.
7.
Mayo
,
J.
, and
Dominguez
,
J.
, 1997, “
Finite Element Geometrically Nonlinear Dynamic Formulation of Flexible Multibody Systems Using a New Displacement Representation
,”
ASME J. Vibr. Acoust.
,
119
(
4
), pp.
573
581
.
8.
Zhou
,
Z.
,
Mechefske
,
C. K.
, and
Xi
,
F.
, 2007, “
Nonstationary Vibration of a Fully Flexible Parallel Kinematic Machine
,”
ASME J. Vibr. Acoust.
,
129
(
5
), pp.
623
630
.
9.
Gasparetto
,
A.
, 2004, “
On the Modeling of Flexible-Link Planar Mechanisms: Experimental Validation of an Accurate Dynamic Model
,”
J. Dyn. Syst. Meas. Control
,
126
(
2
), pp.
365
375
.
10.
Zhang
,
C. X.
, and
Yu
,
Y. Q.
, 2004, “
Dynamic Analysis of Planar Cooperative Manipulators With Link Flexibility
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
442
448
.
11.
Zhang
,
X.
, and
Yu
,
Y. Q.
, 2000, “
A New Spatial Rotor Beam Element for Modeling Spatial Manipulators With Joint and Link Flexibility
,”
Mech. Mach. Theory
,
35
, pp.
403
421
.
12.
Farid
,
M.
, and
Lukasiewicz
,
S. A.
, 2000, “
Dynamic Modeling of Spatial Manipulators With Flexible Links and Joints
,”
Comput. Struct.
,
75
, pp.
419
437
.
13.
Meirovitch
,
L.
, 1986,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
14.
Book
,
W. J.
, 1984, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Robot. Res.
,
3
(
3
), pp.
87
101
.
15.
Martins
,
J.
,
Ayala botto
,
M.
, and
Sa Da Costa
,
J.
, 2002, “
Modeling of Flexible Beams for Robotic Manipulators
,”
Multibody Syst. Dyn.
,
7
, pp.
79
101
.
16.
De Luca
,
A.
, and
Siciliano
,
B.
, 1991, “
Closed-Form Dynamic Model of Planar Multilink Lightweight Robots
,”
IEEE Trans. Syst. Man and Cybern.
,
21
(
4
), pp.
826
839
.
17.
Vakil
,
M.
,
Fotouhi
,
R.
,
Nikiforuk
,
P. N.
, and
Salmasi
,
H.
, 2008, “
A Constrained Lagrange Formulation of Multilink Planar Flexible Manipulator
,”
J. Vibr. Acoust.
,
13
, p.
031007
.
18.
Mohan
,
A.
, and
Saha
,
S. K.
, 2009, “
A Recursive, Numerically Stable, and Efficient Simulation Algorithm for Serial Robots With Flexible Links
,”
Multibody Syst. Dyn.
,
21
(
1
), pp.
1
35
.
19.
Zhang
,
D. G.
, 2009, “
Recursive Lagrangian Dynamic and Simulation of Multi-Link Spatial Flexible Manipulator Arms
,”
Appl. Math. Mech.
,
30
(
10
), pp.
1283
1284
.
20.
Zhang
,
X.
,
Mills
,
J. K.
, and
Cleghorn
,
W. L.
, 2009, “
Coupling Characteristics of Rigid Body Motion and Elastic Deformation of a 3-PRR Parallel Manipulator With Flexible Links
,”
Multibody Syst. Dyn.
,
21
(
2
), pp.
167
192
.
21.
Zhang
,
X.
,
Mills
,
J. K.
, and
Cleghorn
,
W. L.
, 2010, “
Investigation of Axial Forces on Dynamic Properties of a Flexible 3-RRR Planar Parallel Manipulator Moving With High Speed
,”
Robotica
,
28
(
4
), pp.
607
619
.
22.
Subudhi
,
B.
, and
Morris
,
A. S.
, 2002, “
Dynamic Modeling, Simulation and Control of Manipulator With Flexible Links and Joints
,”
Rob. Auton. Syst.
,
41
, pp.
257
270
.
23.
Ginsberg
,
J. H.
, 1995,
Advanced Engineering Dynamics
,
Cambridge University Press
,
New York
.
24.
Angeles
,
J.
, and
Lee
,
S.
, 1988, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
J. Appl. Mech.
,
55
(
1
), pp.
243
244
.
25.
Prezemienecki
,
J. S.
, 1967,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
26.
Spong
,
M. W.
, 1987, “
Modeling and Control of Elastic Joint Robots
,”
J. Dyn. Syst. Meas. Control
,
109
, pp.
310
319
.
27.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
, 2011, “
A Study on the Free Vibration of Flexible-Link Flexible-Joint Manipulators
,”
J. Mech. Eng. Sci.
(in press).
28.
ANSYS, Release 11, “
Release 11 Document for ANSYS
,” Element reference, www.ansys.com
29.
Rankin
,
C. C.
, and
Brogan
,
F. A.
, 1986, “
An Element Independent Corotational Procedure for the Treatment of the Large Rotations
,”
ASME J. Pressure Vessel Technol.
,
108
(
2
), pp.
165
175
.
30.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
, 2010, “
Closed Form Dynamic Model of Flexible-Link Flexible-Joint Manipulators
,”
CSME Forum 2010
, June 7–9, British Columbia, Canada (No. 154).
You do not currently have access to this content.