In this paper, the parametric stability of axially accelerating viscoelastic beams is revisited. The effects of the longitudinally varying tension due to the axial acceleration are highlighted, while the tension was approximately assumed to be longitudinally uniform in previous studies. The dependence of the tension on the finite support rigidity is also considered. The generalized Hamilton principle and the Kelvin viscoelastic constitutive relation are applied to establish the governing equations and the associated boundary conditions for coupled planar motion of the beam. The governing equations are linearized into the governing equation in the transverse direction and the expression of the longitudinally varying tension. The method of multiple scales is employed to analyze the parametric stability of transverse motion. The stability boundaries are derived from the solvability conditions and the Routh-Hurwitz criterion for principal and sum resonances. In terms of stability boundaries, the governing equations with or without the longitudinal variance of tension are compared and the effects of the finite support rigidity are also examined. Some numerical examples are presented to demonstrate the effects of the stiffness, the viscosity, and the mean axial speed on the stability boundaries. The differential quadrature scheme is developed to numerically solve the governing equation, and the computational results confirm the outcomes of the method of multiple scales.

References

1.
Miranker
,
W. L.
, 1960,
“The Wave Equation in a Medium in Motion,”
IBM J. Res. Dev.
,
4
, pp.
36
42
.
2.
Pasin
,
F.
, 1972,
“ÜBer Die Stabilität der Beigeschwingungen von in Laengsrichtung Periodisch Hin und Herbewegten Stäben,”
Ingenieur-Arch.,
41
, pp.
387
393
.
3.
Mote
, Jr.,
C. D.
, 1975,
“Stability of Systems Transporting Accelerating Axially Moving Materials,”
ASME J. Dyn. Syst., Meas., Control
,
97
, pp.
96
98.
4.
Elmaraghy
,
R.
, and
Tabarrok
,
B.
, 1975,
“On the Dynamic Stability of an Axially Oscillating Beam,”
J. Franklin Inst.
,
300
, pp.
25
39
.
5.
Pakdemirli
,
M.
, and
Batan
,
H.
, 1993,
“Dynamic Stability of a Constantly Accelerating Strip,”
J. Sound Vib.
,
168
, pp.
371
378.
6.
Pakdemirli
,
M.
,
Ulsoy
,
A. G.
, and
Ceranoglu
,
A.
, 1994,
“Transverse Vibration of an Axially Accelerating String,”
J. Sound Vib.
,
169
, pp.
179
196
.
7.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
, 1997, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
, pp.
815
832
.
8.
Suweken
,
G.
, and
Van Horssen
,
W. T.
, 2003, “
On the Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity, Part I: The String-Like Case
,”
J. Sound Vib.
,
264
, pp.
117
133
.
9.
Ponomareva
,
S. V.
, and
Van Horssen
,
W. T.
, 2007, “
On Transversal Vibrations of an Axially Moving String With a Time-Varying Velocity
,”
Nonlinear Dyn.
,
50
, pp.
315
323
.
10.
Ghayesh
,
M. H.
, 2009, “
Stability Characteristics of an Axially Accelerating String Supported by an Elastic Foundation
,”
Mech. Mach. Theory
,
44
, pp.
1964
1979
.
11.
Öz
,
H. R.
, and
Pakdemirli
,
M.
, 1999, “
Vibrations of an Axially Moving Beam With Time-Dependent Velocity
,”
J. Sound Vib.
,
227
, pp.
239
257
.
12.
Özkaya
,
E.
, and
Pakdemirli
,
M.
, 2000, “
Vibrations of an Axially Accelerating Beam With Small Flexural Stiffness
,”
J. Sound Vib.
,
234
, pp.
521
535
.
13.
Parker
,
R. G.
, and
Lin
,
Y.
, 2001, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
,
68
, pp.
49
57
.
14.
Öz
,
H. R.
, 2001, “
On the Vibrations of an Axially Traveling Beam on Fixed Supports With Variable Velocity
,”
J. Sound Vib.
,
239
, pp.
556
564
.
15.
Suweken
,
G.
, and
Van Horssen
,
W. T.
, 2003, “
On the Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity, Part II: The Beam-Like Case
,”
J. Sound Vib.
,
267
, pp.
1007
1027
.
16.
Pakdemirli
,
M.
, and
Öz
,
H. R.
, 2008, “
Infinite Mode Analysis and Truncation to Resonant Modes of Axially Accelerated Beam Vibrations
,”
J. Sound Vib.
,
311
, pp.
1052
1074
.
17.
Yang
,
X. D.
,
Tang
,
Y. Q.
,
Chen
,
L. Q.
, and
Lim
,
C. W.
, 2010, “
Dynamic Stability of Axially Accelerating Timoshenko Beams: Averaging Method
,”
Eur. J. Mech. A/Solids
,
29
, pp.
81
90
.
18.
Yang
,
X. D.
, and
Chen
,
L. Q.
, 2006, “
Stability in Parametric Resonances of an Axially Accelerating Beam Constituted by Boltzmann’s Superposition Principle
,”
J. Sound Vib.
,
289
, pp.
54
65
.
19.
Ding
,
H.
, and
Chen
,
L. Q.
, 2008, “
Stability of Axially Accelerating Viscoelastic Beams: Multi-Scale Analysis With Numerical Confirmations
,”
Eur. J. Mech. A/Solids
,
27
, pp.
1108
1120
.
20.
Wang
,
B.
, and
Chen
,
L. Q.
, 2009, “
Asymptotic Stability Analysis With Numerical Confirmation of an Axially Accelerating Beam Constituted by the 3-Parameter Viscoelastic Model
,”
J. Sound Vib.
,
328
, pp.
456
466
.
21.
Zhu
,
W. D.
, and
Guo
,
B. Z.
, 1998, “
Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile
,”
ASME J. Appl. Mech.
,
65
, pp.
901
907
.
22.
Özkaya
,
E.
, and
Pakdenirli
,
M.
, 2000, “
Lie Group Theory and Analytical Solutions for the Axially Accelerating String Problem
,”
J. Sound Vib.
,
230
, pp.
729
742
.
23.
Özkaya
,
E.
, and
Pakdenirli
,
M.
, 2002, “
Group-Theoretic Approach to Axially Accelerating Beam Problem
,”
Acta Mech.
,
155
, pp.
111
123
.
24.
Chung
,
J.
,
Han
,
C. S.
, and
Yi
,
K.
, 2001, “
Vibration of an Axially Moving String With Geometric Non-Linearity and Translating Acceleration
,”
J. Sound Vib.
240
, pp.
733
746
.
25.
Chen
,
L. Q.
, 2005, “
Principal Parametric Resonance of Axially Accelerating Viscoelastic Strings Constituted by the Boltzmann Superposition Principle
,”
Proc. R. Soc. London, Ser. A
461
, pp.
2701
2720
.
26.
Chen
,
L. Q.
,
Chen
,
H.
, and
Lim
,
C. W.
, 2008, “
Asymptotic Analysis of Axially Accelerating Viscoelastic Strings
,”
Int. J. Eng. Sci.
,
46
, pp.
976
985
.
27.
Ghayesh
,
M. H.
, 2008, “
Nonlinear Transversal Vibration and Stability of an Axially Moving Viscoelastic String Supported by a Partial Viscoelastic Guide
,”
J. Sound Vib.
,
314
, pp.
757
774
.
28.
Ghakraborty
,
G.
, and
Mallik
,
A. K.
, 1999, “
Stability of an Accelerating Beam
,”
J. Sound Vib.
,
227
, pp.
309
320
.
29.
Öz
,
H. R.
,
Pakdemirli
,
M.
, and
Boyaci
,
H.
, 2001, “
Non-Linear Vibrations and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Non-Linear Mech.
,
36
, pp.
107
115
.
30.
Tang
,
Y. Q.
,
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2009, “
Parametric Resonance of Axially Moving Timoshenko Beams With Time-Dependent Speed
,”
Nonlinear Dyn.
,
58
, pp.
715
724
.
31.
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2005, “
Steady-State Response of Axially Moving Viscoelastic Beams With Pulsating Speed: Comparison of Two Nonlinear Models
,”
Int. J. Solid Struct.
,
42
, pp.
37
50
.
32.
Ghayesh
,
M. H.
, and
Balar
,
S.
, 2008, “
Non-Linear Parametric Vibration and Stability of Axially Moving Visco-Elastic Rayleigh Beams
,”
Int. J. Solids Struct.
,
45
, pp.
6451
6467
.
33.
Ghayesh
,
M. H.
, and
Khadem
,
S. E.
, 2008, “
Rotary Inertia and Temperature Effects on Non-Linear Vibration, Steady-State Response and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Mech. Sci.
,
50
, pp,
389
404
.
34.
Ravindra
,
B.
, and
Zhu
,
W. D.
, 1998, “
Low Dimensional Chaotic Response of Axially Accelerating Continuum in the Supercritical Regime
,”
Arch. Appl. Mech.
,
68
, pp.
195
205
.
35.
Chen
,
L. Q.
,
Wu
,
J.
, and
Zu
,
J. W.
, 2004, “
Asymptotic Nonlinear Behaviors in Transverse Vibration of an Axially Accelerating Viscoelastic String
,”
Nonlinear Dyn.
,
35
, pp.
347
360
.
36.
Chen
,
L. H.
,
Zhang
,
W.
, and
Yang
,
F. H.
, 2010, “
Nonlinear Dynamics of Higher Dimensional System for an Axially Accelerating Viscoelastic Beam
,”
J. Sound Vib.
,
329
, pp.
5321
5345
.
37.
Ding
,
H.
, and
Chen
,
L. Q.
, 2009, “
Nonlinear Dynamics of Axially Accelerating Viscoelastic Beams Based on Differential Quadrature
,”
Acta Mech. Solida Sinica
,
22
, pp.
267
275
.
38.
Mote
, Jr.,
C. D.
, 1965, “
A Study of Band Saw Vibrations
,”
J. Franklin Inst.
,
276
, pp.
430
444
.
39.
Chen
,
L. Q.
, and
Ding
,
H.
, 2010, “
Steady-State Transverse Response in Planar Vibration of Axially Moving Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
132
, pp.
011009
.
40.
Wickert
,
J. A.
, 1992, “
Non-Linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Non-Linear Mech.
,
27
, pp.
503
517
.
41.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
, 1990, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
42.
Chen
,
L. Q.
, and
Zu
,
J. W.
, 2008, “
Solvability Condition in Multi-Scale Analysis of Gyroscopic Continua
,”
J. Sound Vib.
,
309
, pp.
338
342
.
43.
Malik
,
M.
, and
Bert
,
C. W.
, 1996, “
Implementing Multiple Boundary Conditions in the DQ Solution of Higher-Order PDE’s: Application to Free Vibration of Plates
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
1237
1258
.
You do not currently have access to this content.