This paper investigates the use of inertial actuators to reduce the sound radiated by a submarine hull under excitation from the propeller. The axial forces from the propeller are tonal at the blade passing frequency. The hull is modeled as a fluid-loaded cylindrical shell with ring stiffeners and equally spaced bulkheads. The cylinder is closed at each end by circular plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation connected to the propeller shaft. Inertial actuators are used as the structural control inputs. The actuators are arranged in circumferential arrays and attached to the internal end plates of the hull. Two active control techniques corresponding to active vibration control and discrete structural acoustic sensing are implemented to attenuate the structural and acoustic responses of the submarine. In the latter technique, error information on the radiated sound fields is provided by a discrete structural acoustic sensor. An acoustic transfer function is defined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to provide control forces with a magnitude large enough to reduce the sound due to hull vibration.

References

References
1.
Ross
,
D.
, 1976,
Mechanics of Underwater Sound,
Pergamon
,
New York.
2.
Merz
,
S.
,
Kinns
,
R.
, and
Kessissoglou
,
N. J.
, 2009,
“Structural and Acoustic Responses of a Submarine Hull Due to Propeller Forces,”
J. Sound Vib.
,
325
, pp.
266
286
.
3.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
, 2010,
“Acoustic Signature of a Submarine Hull Under Harmonic Excitation,”
Appl. Acoust.
,
71
, pp.
17
31
.
4.
Dylejko
,
P. G.
,
Kessissoglou
,
N. J.
,
Tso
,
Y.
, and
Norwood
,
C. J.
, 2007,
“Optimisation of a Resonance Changer to Minimise the Vibration Transmission in Marine Vessels,”
J. Sound Vib.
,
300
, pp.
101
116.
5.
Goodwin
,
A. J. H.
, 1960,
“The Design of a Resonance Changer to Overcome Excessive Axial Vibration of Propeller Shafting,”
Trans. Inst. Mar. Eng.
,
72
, pp.
37
63
.
6.
Rigby
,
C. P.
, 1948,
“Longitudinal Vibration of Marine Propeller Shafting,”
Trans. Inst. Mar. Eng.
,
60
, pp.
67
78
.
7.
Schwanecke
,
H.
, 1979,
“Investigations on the Hydrodynamic Stiffness and Damping of Thrust Bearings in Ships,”
Trans. Inst. Mar. Eng.
,
91
, pp.
68
77
.
8.
Merz
,
S.
,
Kessissoglou
,
N. J.
,
Kinns
,
R.
, and
Marburg
,
S.
, 2010,
“Minimisation of the Sound Power Radiated by a Submarine Through Optimisation of Its Resonance Changer,”
J. Sound Vib.
,
329
, pp.
980
993
.
9.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
, 2011,
“Reduction of the Sound Pressure Radiated by a Submarine by Isolation of the End Caps,”
ASME J. Vibr. Acoust.
,
133
, p.
031008
.
10.
Markus
,
S.
, 1976,
“Damping Properties of Layered Cylindrical Shells Vibrating in Axially Symmetric Modes,”
J. Sound Vib.
,
48
, pp.
511
524
.
11.
Lester
,
H. C.
, and
Lefebvr
,
S.
, 1993,
“Piezoelectric Actuator Models for Active Sound and Vibration Control of Cylinders,”
J. Intell. Mater. Syst. Struct.
,
4
, pp.
295
306
.
12.
Ray
,
M. C.
,
Oh
,
J.
, and
Baz
,
A.
, 2001,
“Active Constrained Layer Damping of Thin Cylindrical Shells,”
J. Sound Vib.
,
240
, pp.
921
935
.
13.
Pan
,
X.
,
Tso
,
Y.
, and
Juniper
,
R.
, 2008,
“Active Control of Radiated Pressure of a Submarine Hull,”
J. Sound Vib.
,
311
, pp.
224
242
.
14.
Pan
,
X.
,
Tso
,
Y.
, and
Juniper
,
R.
, 2008,
“Active Control of Low-Frequency Hull-Radiated Noise,”
J. Sound Vib.
,
313
, pp.
29
45
.
15.
Baumann
,
W. T.
,
Saunders
,
W. R.
, and
Robertshaw
,
H. H.
, 1991,
“Active Suppression of Acoustic Radiation From Impulsively Excited Structures,”
J. Acoust. Soc. Am.
,
90
, pp.
3202
3208
.
16.
Maillard
,
J. P.
, and
Fuller
,
C. R.
, 1994,
“Advanced Time Domain Wave-Number Sensing for Structural Acoustic Systems. I. Theory and Design,”
J. Acoust. Soc. Am.
,
95
, pp.
3252
3261
.
17.
Maillard
,
J. P.
, and
Fuller
,
C. R.
, 1999,
“Active Control of Sound Radiation From Cylinders With Piezoelectric Actuators and Structural Acoustic Sensing,”
J. Sound Vib.
,
222
, pp.
363
388
.
18.
Caresta
,
M.
, 2011,
“Active Control of Sound Radiated by a Submarine in Bending Vibration,”
J. Sound Vib.
,
330
, pp.
615
624
.
19.
Rosen
,
A.
, and
Singer
,
J.
, 1974,
“Vibrations of Axially Loaded Stiffened Cylindrical Shells,”
J. Sound Vib.
,
34
, pp.
357
378
.
20.
Junger
,
M. C.
, and
Feit
,
D.
, 1986,
Sound, Structures, and Their Interaction,
MIT, Cambridge
,
MA
.
21.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
, 2008,
“Vibration of Fluid Loaded Conical Shells,”
J. Acoust. Soc. Am.
,
124
, pp.
2068
2077
.
22.
Tso
,
Y. K.
, and
Hansen
,
C. H.
, 1995,
“Wave Propagation Through Cylinder/Plate Junctions,”
J. Sound Vib.
,
186
, pp.
447
461
.
23.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1972,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,
Dover
,
New York.
24.
Fuller
,
C. R.
,
Elliott
,
S. J.
, and
Nelson
,
P. A.
, 1996,
Active Control of Vibration
,
Academic
,
London.
25.
Nelson
,
P. A.
, and
Elliott
,
S. J.
, 1992,
Active Control of Sound,
Academic
,
London.
26.
Benassi
,
L.
,
Elliott
,
S. J.
, and
Gardonio
,
P.
, 2004,
“Active Vibration Isolation Using an Inertial Actuator With Local Force Feedback Control,”
J. Sound Vib.
,
276
, pp.
157
179
.
27.
Leissa
,
A. W.
, 1993,
Vibration of Shells,
American Institute of Physics
,
New York.
28.
Fahy
,
F. J.
, 1985,
Sound and Structural Vibration
,
Academic
,
London.
29.
Skelton
,
E. A.
, and
James
,
J. H.
, 1997,
Theoretical Acoustics of Underwater Structures
,
Imperial College Press
,
London.
You do not currently have access to this content.