The paper investigates wave dispersion in two-dimensional, weakly nonlinear periodic lattices. A perturbation approach, originally developed for one-dimensional systems and extended herein, allows for closed-form determination of the effects nonlinearities have on dispersion and group velocity. These expressions are used to identify amplitude-dependent bandgaps, and wave directivity in the anisotropic setting. The predictions from the perturbation technique are verified by numerically integrating the lattice equations of motion. For small amplitude waves, excellent agreement is documented for dispersion relationships and directivity patterns. Further, numerical simulations demonstrate that the response in anisotropic nonlinear lattices is characterized by amplitude-dependent “dead zones.”

References

References
1.
Brillouin
,
L.
, 1946,
Wave Propagation in Periodic Structures
,
Dover
,
New York
.
2.
Mead
,
D. J.
, and
Parthan
,
S.
, 1979, “
Free Wave Propagation in Two-Dimensional Periodic Plates
,”
J. Sound Vib.
,
64
(
3
), pp.
325
348
.
3.
Mead
,
D. J.
,
Zhu
,
D. C.
, and
Bardell
,
N. S.
, 1988, “
Free Vibration of an Orthogonally Stiffened Flat Plate
,”
J. Sound Vib.
,
127
(
1
), pp.
19
48
.
4.
Mace
,
B.
, and
Manconi
,
E.
, 2008, “
Modelling Wave Propagation in Two-Dimensional Structures Using Finite Element Analysis
,”
J. Sound Vib.
,
318
(
4-5
), pp.
884
902
.
5.
Mead
,
D. J.
, 1996, “
Wave Propagation in Continous Periodic Structures: Research Contributions from Southampton 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
6.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
, 2003, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
(
3
), pp.
363
372
.
7.
Ruzzene
,
M.
, and
Tsopelas
,
P.
, 2003, “
Control of Wave Propagation in Sandwich Plate Rows with Perioidc Honeycomb Core
,”
J. Eng. Mech.
,
129
(
9
), pp.
975
986
.
8.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
, 2006, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp. (
1995
).
9.
Kohrs
,
T.
, and
Petersson
,
B. a. T.
, 2009, “
Wave Beaming and Wave Propagation in Light Weight Plates with Truss-Like Cores
,”
J. Sound Vib.
,
321
(
1-2
), pp.
137
165
.
10.
Langley
,
R. S.
, 1996, “
The Response of Two-Dimensional Periodic Structures to Point Harmonic Forcing
,”
J. Sound Vib.
,
197
(
4
), pp.
447
469
.
11.
Langley
,
R. S.
,
Bardell
,
N. S.
, and
Ruivo
,
H. M.
, 1997, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage
,”
J. Sound Vib.
,
207
(
4
), pp.
521
535
.
12.
Bullough
,
R. K.
, and
Caudrey
,
P. J.
, 1980,
Solitons
,
Springer
,
Berlin
.
13.
Aceves
,
A.
, 2007, “
Localization and Trapping of Light in One- and Two-Dimensional Nonlinear Periodic Structures
,”
Wave Motion
,
45
(
1-2
), pp.
48
58
.
14.
Babaoglu
,
C.
, and
Erbay
,
S.
, 2001, “
Two-Dimensional Wave Propagation in a Generalized Elastic Solid
,”
Chaos, Solitons Fractals
,
12
(
2
), pp.
381
389
.
15.
Sreelatha
,
K. S.
, and
Babu Joseph
,
K.
, 2000, “
Wave Propagation through a 2D Lattice
,”
Chaos Solitons Fractals
,
11
(
5
), pp.
711
719
.
16.
Duan
,
W. S.
,
Shi
,
Y.
,
Zhang
,
L.
,
Lin
,
M.-M.
, and
Lv
,
K.
, 2005, “
Coupled Nonlinear Waves in Two-Dimensional Lattice
,”
Chaos Solitons Fractals
,
23
(
3
), pp.
957
962
.
17.
,
B.-B.
, and
Tian
,
Q.
, 2010, “
Different Kinds of Discrete Breathers in Three Types of One-Dimensional Models
,”
Commun. Theor. Phys.
,
54
(
4
), pp.
728
.
18.
Feng
,
B.
, and
Kawahara
,
T.
, 2007, “
Discrete Breathers in Two-Dimensional Nonlinear Lattices
,”
Wave Motion
,
45
(
1-2
), pp.
68
82
.
19.
Franchini
,
A.
, and
et al.
, 2002, “
Theory of Intrinsic Localized Modes in Diatomic Chains: Beyond the Rotating Wave Approximation
,”
J. Phys.: Condens. Matter
,
14
(
2
), pp.
145
.
20.
He
, and
J.
, 2004, “
The Homotopy Perturbation Method for Nonlinear Oscillators with Discontinuities
,”
Appl. Math. Comput.
,
151
(
1
), pp.
287
292
.
21.
He
,
J.-H.
, 2002, “
Modified Lindstedt–Poincare Methods for Some Strongly Non-Linear Oscillations: Part II: A New Transformation
,”
Int. J. Non-Linear Mech.
,
37
(
2
), pp.
315
320
.
22.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
, 2010, “
A Perturbation Approach for Predicting Wave Propagation in One Dimensional Nonlinear Periodic Structures
,”
J. Vib. Acoust.
,
132
(
3
), pp.
1001
1012
.
23.
Nayfeh
,
A.
, and
Mook
,
D.
, 1996,
Nonlinear Oscillations
,
Wiley
,
New York
.
24.
Spadoni
,
A.
Ruzzene
,
M.
Gonella
,
S.
, and
Scarpa
,
F.
, 2009, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.
25.
Wolfe
,
J. P.
, 1998,
Imaging Phonons: Acoustic Wave Propagation in Solids
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.