This work deals with accurate free-vibration analysis of anisotropic, simply supported plates of square planform. Refined plate theories, which include layer-wise, equivalent single layer and zig-zag models, with increasing number of displacement variables are take into account. Linear up to fourth N-order expansion, in the thickness layer-plate direction have been implemented for the introduced displacement field. Rayleigh-Ritz method based on principle of virtual displacement is derived in the framework of Carrera’s unified formulation. Regular symmetric angle-ply and cross-ply laminates are addressed. Convergence studies are made in order to demonstrate that accurate results are obtained by using a set of trigonometric functions. The effects of the various parameters (material, number of layers, and fiber orientation) upon the frequencies and mode shapes are discussed. Numerical results are compared with available results in literature.

References

References
1.
Leissa
,
W. A.
, 1969,
“Vibration of Plates,”
NASA SP-160
,
U.S. GPO
,
Washington, DC
, pp.
354
.
2.
Germain
,
S.
, 1821, Researches Sur la Theorie des Surfaces Elastiques, Paris.
3.
Lagrange
,
J. L.
, 1828, Note Communiquee Aux Commissaires Pour Le Prix de la Surface Elastique (Dec. 1811), ct. Annales de Chimie, Vol. 39, pp. 149 and 207.
4.
Soedel
,
W.
, 2004,
Vibrations of Shells and Plates
,
2nd ed.
,
Marcel Dekker
,
NY
.
5.
Timoshenko
,
S. P.
, 1983,
History of Strength of Materials
,
Dover
,
NY
.
6.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
J. Appl. Mech.
,
67
, pp.
A67
A77
.
7.
Mindlin
,
R. D.
, 1951, “
Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates
,”
J. Appl. Mech.
,
18
(
10
), pp.
31
38
.
8.
Hearmon
,
R. F. S.
, 1946, “
The Fundamental Frequency of Vibration of Rectangular Wood and Ply-Wood Plates
,”
Proc. Phys. Soc. (London)
,
58
, pp.
78
92
.
9.
Smith
,
C. B.
, 1953, “
Some New Types of Orthotropic Plates Laminated of Orthotropic Materials
,”
J. Appl. Mech.
,
20
, pp.
286
288
.
10.
Reissner
,
E.
, and
Stavsky
,
Y.
, 1961, “
Bending and Stretching of Certain Types of Heterogeneous Anisotropic Elastic Plates
,”
J. Appl. Mech.
,
28
(
3
), pp.
402
408
.
11.
Ambartsumian, S. A., 1969, Theory of Anisotropic Plates, translated from Russian by T. Cheron and J. E., Ashton, ed., Tech Pub Co.
12.
Lekhnitski
,
S. T.
, 1957,
Anisotropic plates
,
GITTL
,
Moscow
.
13.
Lekhnitski
,
S. G.
, 1935, “
Strength Calculation of Composite Beams
,”
Vestn. Inzh. Tekh.
,
9
.
14.
Ren
,
J. G.
, 1986, “
A New Theory of Laminated Plates
,”
Compos. Sci. Technol.
,
26
, pp.
225
239
.
15.
Ren
,
J. G.
, 1986, “
Bending Theory of Laminated Plates
,”
Compos. Sci. Technol.
,
27
, pp.
225
248
.
16.
Yu
,
W.
, 1959, “
A New Theory of Elastic Sandwich Plates One Dimensional Case
,”
ASME J. Appl. Mech.
,
37
, pp.
1031
1036
.
17.
Ashton
,
J. E.
, and
Whitney
,
J. M.
, 1970,
Theory of Laminated Plates
,
Technomic Publishing
, Co, Stamford, Connecticut.
18.
Vinson
,
J. R.
, and
Sierakowski
,
R. L.
, 1986,
The Behaviour of Structures Composed of Composite Materials
,
Martinus Nijhoff
,
Dordrecht, The Netherlands
.
19.
Whitney
,
J. M.
, 1987,
Structural Analysis of Laminated Anisotropic Plates,
Technomic Publishing
, Lancaster, PA.
20.
Whitney
,
J. M.
, 1969, “
The Effects of Transverse Shear Deformation on the Bending of Laminated Plates
,”
J. Compos. Mater.
,
3
, pp.
534
547
.
21.
Mohan
,
D.
, and
Kingsbury
,
H. B.
, 1970, “
Free Vibrations of Generally Laminated Orthotropic Plates
,”
J. Acoust. Soc. Am.
,
50
, pp.
266
269
.
22.
Noor
,
A. K.
, 1973, “
Free Vibration of Multilayered Composite Plates
,”
AIAA J.
,
11
, pp.
1038
1039
.
23.
Qatu
,
M. S.
, 1991,
“Free Vibration of Laminated Composite Rectangular Plates.”
Int. J. Solids Struct.
,
28
, pp.
941
954
.
24.
Qatu
,
M. S.
, and
Leissa
,
A. W.
, 1991, “
Vibration Studies for Laminated Composite Twisted Cantilever Plates
,”
Int. J. Mech. Sci.
,
33
, pp.
927
940
.
25.
Qatu
,
M. S.
, 1994, “
Natural Frequencies for Cantilevered Laminated Composite Right Triangular and Trapezoidal Plates
,”
Compos. Sci. Technol.
,
55
, pp.
441
449
.
26.
Qatu
,
M. S.
, 1994,
“Vibrations of Laminated Composite Completely Free Triangular and Trapezoidal Plates,”
Int. J. Mech. Sci.
,
36
, pp.
797
809
.
27.
Qatu
,
M. S.
, 2004,
Vibration of Laminated Composite Shells and Plates
,
Elsevier
,
New York
.
28.
Du
,
J.
,
Liu
,
Z.
,
Wen
,
L.
,
Li
,
X. Z.
, and
Li
,
W.
, 2010, “
Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges
,”
J. Vibr. Acoust.
,
132
, p.
031002
.
29.
Leissa
,
A. W.
, and
Narita
,
Y.
, 1989, “
Vibration Studies for Simply Supported Symmetrically Laminated Rectangular Plates
,”
Compos. Struct.
,
12
, pp.
113
132
.
30.
Carrera
,
E.
, 2003, “
Historical Review of Zig-Zag Theories for Multilayered Plates and Shells
,”
Appl. Mech. Rev.
,
56
, pp.
287
308
.
31.
Carrera
,
E.
, 1995,
Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat.
,
20
, pp.
49
87
.
32.
Reissner
,
E.
, 1984,
“On a Certain Mixed Variational Theorem and a Proposed Application,”
Int. J. Numer. Methods Eng.
,
20
(
7
), pp.
1366
1368
.
33.
Carrera
,
E.
, 2002, “
Theories and Finite Elements for Multilayered Anisotropic Composite Plates and Shells
,”
Arch. Comput. Methods Eng.
,
9
(
2
), pp.
87
140
.
34.
Carrera
,
E.
,
“Theories and Finite Elements for Multilayered Plates and Shells: a Unified Compact Formulation With Numerical Assessment and Benchmarking,”
Arch. Comput. Methods Eng
.,
10
(
3
), pp.
216
296
.
35.
Carrera
,
E.
, 1997, “
C0z Requirements-Models for the Two Dimensional Analysis of Multilayered Structures
,”
Compos. Struct.
,
37
, pp.
373
384
.
36.
Carrera
,
E.
, 1998, “
A Refined Multilayered Finite Element Model Applied to Linear and Nonlinear Analysis of Sandwich Plate
,”
Compos. Sci. Technol.
,
58
, pp.
1553
1569
.
37.
Carrera
,
E.
, 1998, “
Mixed Layer-Wise Models for Multilayer Plate Analysis
,”
Compos. Struct.
,
43
, pp.
57
70
.
38.
Carrera
,
E.
, 1998, “
Evaluation of Layer-Wise Mixed Theories for Laminated Plate Analysis
,”
AIAA J.
,
26
, pp.
830
839
.
39.
Carrera
,
E.
, 1999, “
Transverse Normal Stress Effects in Multilayered Plates
,”
ASME J. Appl. Mech.
,
66
, pp.
1004
1012
.
40.
Carrera
,
E.
, 1999, “
A Study of Transverse Normal Stress Effects on Vibration of Multilayered Plates and Shells
,”
J. Sound. Vib.
,
225
, pp.
803
829
.
41.
Carrera
,
E.
, 2000, “
Single-Layer vs Multi-Layers Plate Modeling on the Basis of Reissner’s Mixed Theorem
,”
AIAA J.
,
38
, pp.
342
343
.
42.
Carrera
,
E.
, 2000, “
A Priori vs a Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates
,”
Compos. Struct.
,
48
, pp.
245
260
.
43.
Carrera
,
E.
, and
Demasi
,
L.
, 2002, “
Classical and Advanced Multilayered Plate Elements Based Upon pvd and rmvt. Part 1: Derivation of Finite Element Matrices
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
191
231
.
44.
Carrera
,
E.
, and
Demasi
,
L.
, 2002, “
Classical and Advanced Multilayered Plate Elements Based Upon pvd and rmvt. Part 2: Numerical Implementation
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
253
291
.
45.
Carrera
,
E.
, 2001, “
Developments, Ideas, and Evaluation Based Upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells
,”
Appl. Mech. Rev.
,
54
, pp.
301
329
.
46.
Ferreira
,
L.
,
Roque
,
C. M. C.
,
Carrera
,
E.
, and
Cinefra
,
M.
, 2011, “
Analysis of Thick Isotropic and Cross-Ply Laminated Plates by Radial Basis Functions and a Unified Formulation
,”
J. Sound. Vib.
,
30
(
4
), pp.
771
.
47.
Boscolo
,
M.
and
Banerjee
,
R. J.
, 2010,
“Dynamic Stiffness Formulation for Plates Using First Order Shear Deformation Theory,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th, Orlando, Florida, 12–15 April, pp.
1
29
.
48.
Tsai
,
S. W.
, 1988,
“Composites Design,”
Think Composites
4th ed.
,
Dayton
, OH.
49.
Reddy
,
J. N.
, 2004,
Mechanics of Laminated Composite Plates and Shells. Theory and Analysis
,
2nd ed.
,
CRC Press
, Boca Raton, Florida.
50.
Jones
,
R. M.
, 1998,
Mechanics of Composite Materials
,
2nd ed.
,
Taylor & Francis
,
London
.
51.
Murakami
,
H.
, 1986,
“Laminated Composite Plate Theory With Improved In-Plane Response,”
J. Appl. Mech.
,
53
pp.
601
666
.
52.
Carrera
,
E.
, 2004, “
On the Use of Murakami’s Zig Zag Function in the Modeling of Layered Plates and Shells
,”
Compos. Struct.
,
82
, pp.
541
554
.
53.
Demasi
,
L.
, 2005, “
Refined Multilayered Plate Elements Based on Murakami Zig-Zag Functions
,”
Compos. Struct.
,
70
, pp.
308
316
.
54.
Carrera
,
E.
, and
Brischetto
,
S.
, 2008, “
Analysis of Thickness Locking in Classical, Refined and Mixed Multilayered Plate Theories
,”
Compos.
Struct.,
82
(
4
), pp.
549
562
.
You do not currently have access to this content.