A magnetostrictive actuator with a stroke of ±1 mm and a blocked force of ±25 N has been developed based on a Terfenol-D driver and a hydraulic stroke amplification mechanism. A mechanical model for this magneto-hydraulic actuator (MHA) is formulated by combining linear piezomagnetic relations for Terfenol-D and a lumped parameter mechanical system model describing the system vibrations. Friction at the fluid seals is described by the LuGre model. The model accurately describes the frequency-domain behavior of the actuator in mechanically-blocked and mechanically-free conditions. The MHA is benchmarked against a commercial electromagnetic driver used in active powertrain mounts in terms of mechanical performance (blocked force and unloaded displacement) and electrical power consumption. Measurements show that the MHA achieves more than twice the frequency bandwidth of the commercial device in the free displacement response, along with comparable static displacements. The commercial device produces higher blocked forces in the frequency range of 10 Hz to 120 Hz beyond which the generated forces are comparable up to 400 Hz. Spectral analysis reveals significant second order components in the commercial actuator displacement response which are absent in the MHA. Further, the MHA achieves superior performance than the commercial actuator operated at maximum current (6 A) with power consumption identical to that of the commercial actuator operated at minimum current (4 A).

References

References
1.
Yu
,
Y.
,
Naganathan
,
N.
, and
Dukkipati
,
R.
, 1999, “
A Literature Review of Automobile Engine Mounting Systems
,”
Mech. Mach. Theory
,
36
, pp.
123
142
.
2.
Jazar
,
G. N.
, and
Golnaraghi
,
F.
, 2002, “
Engine Mounts for Automobile Applications—A Survey
,”
Shock Vibr. Dig.
,
34
, pp.
363
379
.
3.
Lee
,
Y.
, and
Lee
,
C.
, 2002, “
Dynamic Analysis and Control of an Active Engine Mount System
,”
Proc. Inst. Mech. Eng. Part D
,
216
, pp.
921
931
.
4.
Gennesseaux
,
A.
, 1995,
“A New Generation of Engine Mounts,”
SAE Technical Paper, No.
951296
.
5.
Matsuoka
,
H.
,
Mikasa
,
T.
, and
Nemoto
,
H.
, 2004,
“Nv Countermeasure Technology for a Cylinder-on-Demand Engine—Development of Active Control Engine Mount,”
SAE Trans.
,
113
,
2004
-01-
0413
.
6.
Niezrecki
,
C.
,
Brei
,
D.
,
Balakrishnan
,
S.
, and
Moskalik
,
A.
, 2001, “
Piezoelectric Actuation: State of the Art
,”
Shock Vibr. Dig.
,
33
, pp.
269
280
.
7.
Yoon
,
H.-S.
,
Washington
,
G.
,
Eyabi
,
P.
,
Radhamohan
,
M.
,
Woodard
,
S. W.
, and
Dayton
,
R.
, 2006, “
A Millimeter-Stroke Piezoelectric Hybrid Actuator Using Hydraulic Displacement Amplification Mechanism
,”
IEEE Int. Symp. Indust. Electron.
,
4
, pp.
2809
2813
.
8.
Ellison
,
J.
,
Sirohi
,
J.
, and
Chopra
,
I.
, 2004, “
Design and Testing of a Bidirectional Magnetostrictive-Hydraulic Hybrid Actuator
,”
Proc. SPIE
,
5390
, pp.
483
494
.
9.
Bridger
,
K.
,
Sewell
,
J. M.
,
Cooke
,
A. V.
,
Lutian
,
J. L.
,
Kohlhafer
,
D.
,
Small
,
G. E.
, and
Kuhn
,
P. M.
, 2004, “
High-Pressure Magnetostrictive Pump Development: A Comparison of Prototype and Modeled Performance
,”
Proc. SPIE
,
5388
, pp.
246
257
.
10.
Rupinsky
,
M. J.
, and
Dapino
,
M. J.
, 2006,
“Smart Material Electrohydrostatic Actuator for Intelligent Transportation Systems,”
2006 ASME International Mechanical Engineering Congress and Exposition,
Proc. IMECE
,
6
, pp
721
730
.
11.
Mauck
,
L. D.
, and
Lynch
,
C. S.
, 2000, “
Piezoelectric Hydraulic Pump Development
,”
J. Intell. Mater. Syst. Struct.
,
11
, pp.
758
764
.
12.
Sirohi
,
J.
, and
Chopra
,
I.
, 2003, “
Design and Development of a High Pumping Frequency Piezoelectric-Hydraulic Hybrid Actuator
,”
J. Intell. Mater. Syst. Struct.
,
14
, pp.
135
147
.
13.
Ushijima
,
T.
, and
Kumakawa
,
S.
, 1993,
“Active Engine Mount With Piezo-Actuator for Vibration Control,”
SAE Trans.
,
102
,
930201
.
14.
Shibayama
,
T.
,
Ito
,
K.
,
Gami
,
T.
,
Oku
,
T.
,
Nakajima
,
Z.
, and
Ichikawa
,
A.
, 1995,
“Active Engine Mount for a Large Amplitude of Engine Vibration,”
SAE conference proceedings
,
951298
.
15.
Holt
,
J.
,
Rao
,
M.
,
Blough
,
J.
, and
Gruenberg
,
S.
, 2007, “
Time History-Based Excitation in the Dynamic Characterization of Automotive Elastomers
,”
Proc. IMechE Part D
,
221
, pp.
271
284
.
16.
Ohadi
,
A.
, and
Maghsoodi
,
G.
, 2007, “
Simulation of Engine Vibration on Nonlinear Hydraulic Engine Mounts
,”
J. Vibr. Acoust.
,
129
, pp.
417
424
.
17.
Kyprianou
,
A.
,
Giacomin
,
J.
,
Worden
,
K.
,
Heidrich
,
M.
, and
Bocking
,
J.
, 2000, “
Differential Evolution Based Identification of Automotive Hydraulic Engine Mount Model Parameters
,”
Proc. Instn. Mech. Eng.
,
214
, pp.
249
264
.
18.
Singh
,
R.
, 2009, personal communication.
19.
Giurgiutiu
,
V.
,
Chaudhry
,
Z.
, and
Rogers
,
C.
, 1995, “
Stiffness Issues in the Design of Isa Displacement Amplification Devices
,”
Proc. SPIE
,
2443
, pp.
105
119
.
20.
Olsson
,
H.
,
Astrom
,
K. J.
,
de Wit
,
C. C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
, 1998, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.
You do not currently have access to this content.