The boundary stabilization of a coupled fluid-structure system consisting of a vibrating parachute dam in contact with a fluid is studied in this paper. The parachute dam dynamics is presented by nonlinear partial differential equations. The fluid is assumed to be Newtonian, barotropic, and compressible. For the stability analysis of the coupled system, the boundary control method is used; a boundary feedback is constructed to stabilize the vibrations of the dam and the fluid simultaneously. The control force consists of the feedback from dam tension at its end. Moreover, the exponential stabilization of the parachute dam is achieved using a Lyapunov functional and boundary feedback.

References

References
1.
Wang
,
C. Y.
, 1982,
“Optimum Membrane Trough,”
J. Eng. Mech. Div. ASCE
,
108
(
1
), pp.
206
211
.
2.
Crighton
,
D. G.
, 1983,
“The Green Function of an Infinite Fluid Loaded Membrane,”
J. Sound Vib.
,
86
(
3
), pp.
411
433
.
3.
Crighton
,
D. G.
, and
Innes
,
D.
, 1983,
“Low Frequency Acoustic Radiation and Vibration Response,”
J. Sound Vib.
,
91
(
2
), pp.
293
314
.
4.
Bufler
,
H.
, and
Schneider
,
H.
, 1994,
“Large-Strain Analysis of Rubber-Like Membranes Under Dead Weight,”
Gas Press. Hydrostatic Load., Comput. Mech.
14
(
2
), pp.
165
188
.
5.
Daneshmand
,
F.
, and
Ghavanloo
,
E.
, 2010,
“Coupled Free Vibration Analysis of a Fluid-Filled Rectangular Container With a Sagged Bottom Membrane,”
J. Fluids Struct.
,
26
, pp.
236
252
.
6.
Stabel
,
J.
, and
Ren
,
M.
, 2001,
“Fluid-structure Interaction for the Analysis of the Dynamics of Fuel Storage Racks in the Case of Seismic Loads,”
Nucl. Eng. Des.
,
206
, pp.
167
176
.
7.
Moorthy
,
C. M. D.
,
Reddy
,
J. N.
, and
Plaut
,
R. H.
, 1995,
“Three-Dimensional Vibrations of Inflatable Dams,”
Thin-Walled Struct.
,
21
, pp.
291
306
.
8.
Watson
,
L. T.
Suherman
,
S.
and
Plaut
,
R. H.
, 1999,
“Two-Dimensional Elastica Analysis of Equilibrium Shapes of Single-Anchor Inflatable Dams,”
Int. J. Solids Struct.
,
25
, pp.
1383
1398
.
9.
Plaut
,
R. H.
, and
S. A.
Cotton
, 2005,
“Two-Dimensional Vibrations of Air-Filled Geomembrane Tubes Resting on Rigid or Deformable Foundations,”
J. Sound Vib.
,
282
, pp.
265
276
.
10.
Plaut
,
R. H.
, and
Klusman
,
C. R.
, 1999,
“Two-Dimensional Analysis of Stacked Geosynthetic Tubes on Deformable Foundations,”
Thin-Walled Struct.
,
34
, pp.
179
194
.
11.
Casadei
,
F.
,
Halleux
,
J. P.
,
Salla
,
A.
, and
Chille
,
A.
, 2001,
“Transient Fluid-Structure Transient Algorithm for Large Industrial Applications,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3081
3110
.
12.
Hsieh
,
J. C.
, and
Plaut
,
R. H.
, 1990,
“Free Vibrations of Inflatable Dams,”
Acta Mech.
,
85
, pp.
207
220
.
13.
Lowery
,
K.
and
Liapis
,
S.
, 1999,
“Dynamic Analysis of an Inflatable Dam Subjected to a Flood,”
Comput. Mech.
,
24
, pp.
52
64
.
14.
Alhamati
,
A. A. N.
,
Mohammed
,
T. A.
,
Norzaie
,
J.
,
Ghazali
,
A. H.
, and
Al-Jumaily
,
K. K.
, 2005,
“Behavior of Inflatable Dams Under Hydrostatic Conditions,”
Suranaree J. Sci. Technol.
,
12
(
1
), pp.
1
18
.
15.
Ghavanloo
,
E.
, and
Daneshmand
,
F.
, 2009,
“A Semi-Analytical Approach for the Nonlinear Two-dimensional Analysis of Fluid-Filled Thin-Walled Pliable Membrane Tubes,”
Eur. J. Mech., A/Solids
,
28
, pp.
626
637
.
16.
Canbolat
,
H.
,
Dawson
,
D.
,
Rahn
,
C.
, and
Vedagarbha
,
P.
, 1998,
“Boundary Stabilization of Cantilever Flexible Beam With Point Mass Dynamics at the Free End,”
Mechatronics
,
8
, pp.
163
186
.
17.
Chrysafinos
,
K.
,
Gunzburger
,
M. D.
, and
Hou
,
L. S.
, 2006,
“Semidiscrete Approximations of Optimal Robin Boundary Control Problems Constrained by Semilinear Parabolic PDE,”
J. Math. Anal. Appl.
,
323
, pp.
891
912
.
18.
Shahruz
,
S.
, and
Krishna
,
M. L. G.
, 1996,
“Boundary Control of a Non-Linear String,”
J. Sound Vib.
,
195
, pp.
169
174
.
19.
Zhang
,
F.
,
Dawson
,
D. M.
,
Nagarkatti
,
S. P.
, and
Rahn
,
C. D.
, 2000,
“Boundary Control for a General Class of Non-Linear String Actuator Systems,”
J. Sound Vib.
,
229
(
1s
), pp.
113
132
.
20.
Fard
,
M. P.
, and
Sagatun
,
S. I.
, 2001,
“Exponential Stabilization of a Transversely Vibration Beam Via Boundary Control,”
J. Sound Vib.
,
240
(
4
), pp.
613
622
.
21.
Lia
,
T.
, and
Hou
,
Z.
, 2006,
“Exponential Stabilization of an Axially Moving String With Geometrical Nonlinearity by Linear Boundary Feedback,”
J. Sound Vib.
,
296
, pp.
861
870
.
22.
Najafi
,
A.
,
Eghtesad
,
M.
, and
Daneshmand
F.
, 2010,
“Asymptotic Stabilization of Vibrating Composite Plates,”
J. Syst. Control Lett.
,
59
, pp.
530
535
.
23.
Morand
,
H.
, and
Ohayon
,
R.
, 1995,
Fluid Structure Interaction
,
Wiley
,
New York
.
24.
Zubov
,
V. L.
, 1964,
Methods of A. M. Liapunov and their Application, Leningrad 1957
, English Translation,
Noordhoff, Gorning
,
The Netherlands
.
25.
Wang
,
P. K.
, 1966,
“Stability Analysis of Elastic and Aeroelastic System Via Lypunov’s Direct Method,”
J. Franklin Inst.
,
281
, pp.
51
72
.
You do not currently have access to this content.