Rolling element bearings are among the key components in many rotating machineries. It is hence necessary to determine the condition of the bearing with a reasonable degree of confidence. Many techniques have been developed for bearing fault detection. Each of these techniques has its own strengths and weaknesses. In this paper, various features are compared for detecting inner and outer race defects in rolling element bearings. Mutual information between the feature and the defect is used as a quantitative measure of quality. Various time, frequency, and time-frequency domain features are compared and ranked according to their cumulative mutual information content, and an optimal feature set is determined for bearing classification. The performance of this optimal feature set is evaluated using an artificial neural network with one hidden layer. An overall classification accuracy of 97% was obtained over a range of rotating speeds.

References

References
1.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1984, “
Vibration Monitoring of Rolling Element Bearings by the High-Frequency Resonance Technique—A Review
,”
Tribol. Int.
,
17
, pp.
3
10
.
2.
McFadden
,
P.
, and
Smith
,
J.
, 1984, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
, pp.
69
82
.
3.
McFadden
,
P.
, and
Smith
,
J.
, 1985, “
The Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
, pp.
263
273
.
4.
Sugumaran
,
V.
,
Muralidharan
,
V.
, and
Ramachandran
,
K. I.
, 2007, “
Feature Selection Using Decision Tree and Classification Through Proximal Support Vector Machine for Fault Diagnostics of Roller Bearing
,”
Mech. Syst. Signal Process.
,
21
, pp.
930
942
.
5.
Malhi
,
A.
, and
Gao
,
R. X.
, 2004, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
, pp.
1517
1525
.
6.
Guo
,
H.
,
Jack
,
L. B.
, and
Nandi
,
A. K.
, 2004, “
Automatic Feature Extraction for Bearing Fault Detection Using Genetic Programming
,”
IMechE Conf. Trans.
,
2
, pp.
363
372
.
7.
Raymer
,
M. L.
,
Punch
,
W. F.
,
Goodman
,
E. D.
,
Kuhn
,
L. A.
, and
Jain
,
A. K.
, 2000, “
Dimensionality Reduction Using Genetic Algorithms
,”
IEEE Trans. Evol. Comput.
,
4
, pp.
164
171
.
8.
Peng
,
H.
,
Long
,
F.
, and
Ding
,
C.
, 2005, “
Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
, pp.
1226
1238
.
9.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
, 2001,
Pattern Classification
, Wiley-Interscience, New York.
10.
Cover
,
T. M.
, and
Thomas
,
J. A.
, 1991,
Elements of Information Theory
,
Wiley
,
New York
.
11.
Huang
,
J.
,
Cai
,
Y.
, and
Xu
,
X.
, 2007, “
A Hybrid Genetic Algorithm for Feature Selection Wrapper Based on Mutual Information
,”
Pattern Recogn. Lett.
,
28
, pp.
1825
1844
.
12.
Yan
,
Z.
,
Wang
,
Z.
, and
Xie
,
H.
, 2008, “
The Application of Mutual Information-Based Feature Selection and Fuzzy LS-SVM-Based Classifier in Motion Classification
,”
Comput. Methods Programs Biomed.
,
90
, pp.
275
284
.
13.
Tandon
,
N.
, 1994, “
A Comparison of Some Vibration Parameters for the Condition Monitoring of Rolling Element Bearings
,”
Measurement
,
12
, pp.
285
289
. http://dx.doi.org/10.1016/0263-2241(94)90033-7http://dx.doi.org/10.1016/0263-2241(94)90033-7
14.
Barkova
,
A.
, and
Barkov
,
N.
, 1995, “
Condition Assessment and Life Prediction of Rolling Element Bearings
,”
Sound Vib.
,
28
, pp,
10
-
17
.
15.
Randall
,
R. B.
, and
Gao
,
Y.
, 1994, “
Extraction of Modal Parameters From the Response of Power Cepstrum
,”
J. Sound Vib.
,
176
, pp.
179
193
.
16.
Ypma
,
A.
, 2001, “
Learning Methods of Machine Vibration Analysis and Health Monitoring
,” Ph.D. thesis, Delft University, Delft, The Netherlands.
17.
Newland
,
D.
, 1994, “
Wavelet Analysis of Vibration, Part 1: Theory
,”
Trans. ASME, J. Vib. Acoust.
,
116
, pp.
409
416
.
18.
Newland
,
D.
, 1994, “
Wavelet Analysis of Vibration, Part 2: Wavelet Maps
,”
Trans. ASME, J. Vib. Acoust.
,
116
, pp.
417
425
.
19.
Newland
,
D.
, 1999, “
Ridge and Phase Identification in the Frequency Analysis of Transient Signals by Harmonic Wavelets
,”
Trans. ASME, J. Vib. Acoust.
,
121
, pp.
149
155
.
20.
Cade
,
I. S.
,
Keogh
,
P. S.
, and
Sahinkaya
,
M. N.
, 2005, “
Fault Identification in Rotor/Magnetic Bearing Systems Using Discrete Time Wavelet Coefficients
,”
IEEE/ASME Trans. Mechatron.
,
10
(
6
), pp.
648
657
.
21.
Mori
,
K.
,
Kasashmi
,
N.
,
Yoshioka
,
T.
, and
Ueno
,
Y.
, 1996, “
Prediction of Spalling on Ball Bearings by Applying Discrete Wavelet Transform to Vibration Signals
,”
Wear
,
195
, pp.
162
168
.
22.
Nikolaou
,
N. G.
, and
Antoniadis
,
I. A.
, 2003, “
Application of Morphological Operators as Envelope Extractors for Impulsive-Type Periodic Signals
,”
Mech. Syst. Signal Process.
,
17
, pp.
1147
1162
.
23.
Garimella
,
P.
, and
Yao
,
B.
, 2005, “
Robust Model-Based Fault Detection Using Adaptive Robust Observers
,”
Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference
, pp.
3073
3078
.
24.
Hu
,
X.
,
He
,
Q.
, and
Wang
,
H.
, 2008, “
Rolling Bearing Fault Detection Based on SVD Denoising and STFT Demodulation Method
,”
China Railway Science
,
29
, pp.
95
100
.
25.
Bozchalooi
,
I. S.
, and
Liang
,
M.
, 2009, “
Parameter-Free Bearing Fault Detection Based on Maximum Likelihood Estimation and Differentiation
,”
Meas. Sci. Technol.
,
20
, p.
065102
.
26.
Altmann
,
J.
, and
Mathew
,
J.
, 2001, “
Multiple Band-Pass Autoregressive Demodulation for Rolling-Element Bearing Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
15
, pp.
963
977
.
27.
Randall
,
R.
, and
Sawalhi
,
N.
, 2009, “
Signal Processing Tools for Tracking the Size of a Spall in a Rolling Element Bearing
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
.
28.
Dong
,
H.
,
Qi
,
K.
,
Chen
,
X.
,
Zi
,
Y.
,
He
,
Z.
, and
Li
,
B.
, 2009, “
Sifting Process of EMD and Its Application in Rolling Element Bearing Fault Diagnosis
,”
J. Mech. Sci. Technol.
,
23
, pp.
2000
2007
.
29.
Yu
,
Y.
,
Dejie
,
Y.
, and
Junsheng
,
C.
, 2006, “
A Roller Bearing Fault Diagnosis Method Based on EMD Energy Entropy and ANN
,”
J. Sound Vib.
,
294
, pp.
269
277
.
30.
Li
,
H.
,
Xue
,
Z.
, and
Zhang
,
Y.
, 2008, “
Bearing Fault Detection Based on EMD and Phase Envelope Analysis
,”
J. Information and Comp. Sci.
,
29
, pp.
95
100
.
32.
Harris
,
T. A.
, 2002,
Rolling Bearing Analysis
,
Wiley-Interscience
,
New York
.
33.
Nataraj
,
C.
, and
Pietrusko
,
R. G.
, 2005, “
Dynamic Response of Rigid Rotors Supported on Rolling Element Bearings With an Outer Raceway Defect
,”
Proceedings of the ASME IDETC/CIE 2005
.
34.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
, 2004, “
Nonlinear Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
,
272
, pp.
557
580
.
35.
Guo
,
L.
,
Chen
,
J.
, and
Li
,
X.
, 2009, “
Rolling Bearing Fault Classification Based on Envelope Spectrum and Support Vector Machine
,”
J. Vib. Control
,
15
, pp.
1349
1363
.
36.
Sawalhi
,
N.
,
Randall
,
R.
, and
Endo
,
H.
, 2007, “
The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined With Spectral Kurtosis
,”
Mech. Syst. Signal Process.
,
21
, pp.
2616
2633
.
37.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R.
, 2001, “
Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,
Trans. ASME, J. Vib. Acoust.
,
123
, pp.
303
313
.
38.
Antoni
,
J.
, and
Randall
,
R. B.
, 2006, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
, pp.
308
331
.
39.
Chan
,
Y. T.
, 1995,
Wavelet Basics
,
Kluwer Academic
,
Boston
.
40.
Ocak
,
H.
,
Loparo
,
K. A.
, and
Discenzo
,
F. M.
, 2007, “
Online Tracking of Bearing Wear Using Wavelet Packet Decomposition and Probabilistic Modeling
,”
J. Sound Vib.
,
302
, pp.
951
961
.
41.
Garcia-Prada
,
J. C.
,
Castejon
,
C.
, and
Lara
,
O. J.
, 2007, “
Incipient Bearing Fault Diagnosis Using DWT for Feature Extraction
,”
12th IFToMM World Congress
.
42.
Pan
,
Y.
,
Chen
,
J.
, and
Guo
,
L.
, 2009, “
Robust Bearing Performance Degradation Assessment Method Based on Improved Wavelet Packet-Support Vector Data Descriptions
,”
Mech. Syst. Signal Process.
,
23
, pp.
669
681
.
43.
Djebala
,
A.
,
Ouelaa
,
D.
, and
Hamzaoui
,
N.
, 2008, “
Detection of Rolling Bearing Defects Using Discrete Wavelet Analysis
,”
Meccanica
,
43
, pp.
339
348
.
44.
Wu
,
J.-D.
, and
Liu
,
C.-H.
, 2008, “
Investigation of Engine Fault Diagnosis Using Discrete Wavelet Transform and Neural Network
,”
Expert Syst. Appl.
,
35
, pp.
1200
1213
.
45.
Feng
,
Y.
, and
Schlindwein
,
F. S.
, 2009, “
Normalized Wavelet Packets Quantifiers for Condition Monitoring
,”
Mech. Syst. Signal Process.
,
23
, pp.
712
723
.
46.
Randall
,
R. B.
, 1987,
Frequency Analysis
, Bruel & Kjaer, Naerum, Denmark.
You do not currently have access to this content.