Bloch analysis was originally developed to solve Schrödinger’s equation for the electron wave function in a periodic potential field, such as found in a pristine crystalline solid. In the context of Schrödinger’s equation, damping is absent and energy is conserved. More recently, Bloch analysis has found application in periodic macroscale materials, such as photonic and phononic crystals. In the vibration analysis of phononic crystals, structural damping is present together with energy dissipation. As a result, application of Bloch analysis is not straightforward and requires additional considerations in order to obtain valid results. It is the intent of this paper to propose a general framework for applying Bloch analysis in such systems. Results are presented in which the approach is applied to example phononic crystals. These results reveal the manner in which damping affects dispersion and the presence of band gaps in periodic systems.

1.
Brillouin
,
L.
, 1946,
Wave Propagation in Periodic Structures
,
Dover
,
New York
.
2.
Bloch
,
F.
, 1928, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
0044-3328,
52
, pp.
555
600
.
3.
Mead
,
D. J.
, and
Markus
,
S.
, 1969, “
Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
0022-460X,
10
(
2
), pp.
163
175
.
4.
Mead
,
D. J.
, 1975, “
Wave-Propagation and Natural Modes in Periodic Systems. 1. Mono-Coupled Systems
,”
J. Sound Vib.
0022-460X,
40
(
1
), pp.
1
18
.
5.
Faulkner
,
M. G.
, and
Hong
,
D. P.
, 1985, “
Free-Vibrations of a Mono-Coupled Periodic System
,”
J. Sound Vib.
0022-460X,
99
(
1
), pp.
29
42
.
6.
Vonflotow
,
A. H.
, 1986, “
Disturbance Propagation in Structural Networks
,”
J. Sound Vib.
0022-460X,
106
(
3
), pp.
433
450
.
7.
Yong
,
Y.
, and
Lin
,
Y. K.
, 1989, “
Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of Finite Length
,”
J. Sound Vib.
0022-460X,
129
(
1
), pp.
99
118
.
8.
Manconi
,
E.
, and
Mace
,
B. R.
, 2009, “
Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method
,”
J. Acoust. Soc. Am.
0001-4966,
125
(
1
), pp.
154
163
.
9.
Ruzzene
,
M.
, and
Baz
,
A.
, 2000, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
2
), pp.
151
159
.
10.
Pany
,
C.
, and
Parthan
,
S.
, 2003, “
Axial Wave Propagation in Infinitely Long Periodic Curved Panels
,”
ASME J. Vibr. Acoust.
0739-3717,
125
(
1
), pp.
24
30
.
11.
Romeo
,
F.
, and
Paolone
,
A.
, 2007, “
Wave Propagation in Three-Coupled Periodic Structures
,”
J. Sound Vib.
0022-460X,
301
(
3–5
), pp.
635
648
.
12.
Kohrs
,
T.
, and
Petersson
,
B. A. T.
, 2007, “
Wave Propagation in Light Weight Profiles With Truss-Like Cores: Wavenumber Content, Forced Response and Influence of Periodicity Perturbations
,”
J. Sound Vib.
0022-460X,
304
(
3–5
), pp.
691
721
.
13.
Duhamel
,
D.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
, 2006, “
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures
,”
J. Sound Vib.
0022-460X,
294
(
1–2
), pp.
205
220
.
14.
Houillon
,
L.
,
Ichchou
,
M. N.
, and
Jezequel
,
L.
, 2005, “
Wave Motion in Thin-Walled Structures
,”
J. Sound Vib.
0022-460X,
281
(
3–5
), pp.
483
507
.
15.
Langley
,
R. S.
,
Bardell
,
N. S.
, and
Ruivo
,
H. M.
, 1997, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage
,”
J. Sound Vib.
0022-460X,
207
(
4
), pp.
521
535
.
16.
Baz
,
A.
, 2001, “
Active Control of Periodic Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
4
), pp.
472
479
.
17.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
, 2010, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vibr. Acoust.
0739-3717,
132
(
3
), p.
031007
.
18.
Yu
,
D. L.
,
Fang
,
J. Y.
,
Cai
,
L.
,
Han
,
X.
, and
Wen
,
J.
, 2009, “
Triply Coupled Vibrational Band Gap in a Periodic and Nonsymmetrical Axially Loaded Thin-Walled Bernoulli-Euler Beam Including the Warping Effect
,”
Phys. Lett. A
0375-9601,
373
(
38
), pp.
3464
3469
.
19.
Mead
,
D. J.
, 1973, “
A General Theory of Harmonic Wave-Propagation in Linear Periodic Systems With Multiple Coupling
,”
J. Sound Vib.
0022-460X,
27
, pp.
235
260
.
20.
Mukherjee
,
S.
, and
Lee
,
E. H.
, 1978, “
Dispersion-Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Variational Methods
,”
Int. J. Solids Struct.
0020-7683,
14
(
1
), pp.
1
13
.
21.
Sprik
,
R.
, and
Wegdam
,
G. H.
, 1998, “
Acoustic Band Gaps in Composites of Solids and Viscous Liquids
,”
Solid State Commun.
0038-1098,
106
(
2
), pp.
77
81
.
22.
Hofer
,
M.
,
Finger
,
N.
,
Kovacs
,
G.
,
Schoberl
,
J.
,
Zaglmayr
,
S.
,
Langer
,
U.
, and
Lerch
,
R.
, 2006, “
Finite-Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
53
(
6
), pp.
1192
1201
.
23.
Merheb
,
B.
, and
Deymier
,
P. A.
,
Jain
,
M.
,
Aloshyna-Lesuffleur
,
M.
,
Mohanty
,
S.
,
Berker
,
A.
, and
Greger
,
R. W.
, 2008, “
Elastic and Viscoelastic Effects in Rubber/Air Acoustic Band Gap Structures: A Theoretical and Experimental Study
,”
J. Appl. Phys.
0021-8979,
104
(
6
), p.
064913
.
24.
Tassilly
,
E.
, 1987, “
Propagation of Bending Waves in a Periodic-Beam
,”
Int. J. Eng. Sci.
0020-7225,
25
(
1
), pp.
85
94
.
25.
Plunkett
,
R.
, and
Roy
,
A. K.
, 1983, “
Wave Attenuation in Damped Periodic Structures
,” Report No. ADA133736.
26.
Esteban
,
J.
, and
Rogers
,
C. A.
, 1999, “
Wave Localization Due to Material Damping
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
177
(
1–2
), pp.
93
107
.
27.
Psarobas
,
I. E.
, 2001, “
Viscoelastic Response of Sonic Band-Gap Materials
,”
Phys. Rev. B
0556-2805,
64
(
1
), p.
012303
.
28.
Hussein
,
M. I.
, 2009, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
0556-2805,
80
(
21
), p.
212301
.
29.
Lee
,
C. Y.
, and
Leamy
,
M. J.
, and
Nadler
,
J. H.
, 2010, “
Frequency Band Structure and Absorption Predictions for Multi-Periodic Acoustic Composites
,”
J. Sound Vib.
0022-460X,
329
(
10
), pp.
1809
1822
.
30.
Brand
,
O.
, and
Baltes
,
H.
, 1998, “
Micromachined Resonant Sensors—An Overview
,”
Sensors Update
,
4
(
1
), pp.
3
51
.
31.
Buser
,
R. A.
, 1994,
Sensors—A Comprehensive Survey
,
H. H.
Bau
,
N. F.
de Rooij
, and
B.
Kloeck
, eds.,
VCH
,
Weinheim
, pp.
205
284
.
32.
Kokubun
,
K.
,
Hirata
,
M.
,
Ono
,
M.
,
Murakami
,
H.
, and
Toda
,
Y.
, 1985, “
Frequency-Dependence of a Quartz Oscillator on Gas Pressure
,”
J. Vac. Sci. Technol. A
0734-2101,
3
(
6
), pp.
2184
2187
.
33.
Christen
,
M.
, 1983, “
Air and Gas Damping of Quartz Tuning Forks
,”
Sens. Actuators
0250-6874,
4
(
4
), pp.
555
564
.
34.
Andres
,
M. V.
,
Foulds
,
K. W. H.
, and
Tudor
,
M. J.
, 1987, “
Nonlinear Vibrations and Hysteresis of Micromachined Silicon Resonators Designed as Frequency-Out Sensors
,”
Electron. Lett.
0013-5194,
23
(
18
), pp.
952
954
.
35.
Cui
,
Z.
,
Chen
,
D. Y.
, and
Xia
,
S.
, 2002, “
Modelling and Experiment of a Silicon Resonant Pressure Sensor
,”
Analog Integr. Circuits Signal Process.
0925-1030,
32
(
1
), pp.
29
35
.
36.
Farzbod
,
F.
, and
Leamy
,
M. J.
, 2009, “
The Treatment of Forces in Bloch Analysis
,”
J. Sound Vib.
0022-460X,
325
, pp.
545
551
.
37.
Farzbod
,
F.
, and
Leamy
,
M. J.
, 2011, “
Analysis of Bloch’s Method and the Propagation Technique in Periodic Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
133
, p.
031010
.
38.
Meirovitch
,
L.
, 1980,
Computational Methods in Structural Dynamics
,
1st ed.
,
Springer
,
New York
.
39.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
, 2011, “
Multiple Scales Analysis of Wave-Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dynamics
0924-090X,
63
, pp.
193
203
.
You do not currently have access to this content.