This paper presents a study of the wave propagation responses in composite structures in an uncertain environment. Here, the main aim of the work is to quantify the effect of uncertainty in the wave propagation responses at high frequencies. The material properties are considered uncertain and the analysis is performed using Neumann expansion blended with Monte Carlo simulation under the environment of spectral finite element method. The material randomness is included in the conventional wave propagation analysis by different distributions (namely, the normal and the Weibul distribution) and their effect on wave propagation in a composite beam is analyzed. The numerical results presented investigates the effect of material uncertainties on different parameters, namely, wavenumber and group speed, which are relevant in the wave propagation analysis. The effect of the parameters, such as fiber orientation, lay-up sequence, number of layers, and the layer thickness on the uncertain responses due to dynamic impulse load, is thoroughly analyzed. Significant changes are observed in the high frequency responses with the variation in the above parameters, even for a small coefficient of variation. High frequency impact loads are applied and a number of interesting results are presented, which brings out the true effects of uncertainty in the high frequency responses.

1.
van Vinckenroy
,
G.
, and
De Wilde
,
W. P.
, 1995, “
The Use of Monte Carlo Techniques in Statistical Finite Element Methods for the Determination of the Structural Behaviour of Composite Materials Structural Components
,”
Compos. Struct.
0263-8223,
32
(
1–4
), pp.
247
253
.
2.
Li
,
J.
, and
Chen
,
J. B.
, 2006, “
The Probability Density Evolution Method for Dynamic Response Analysis of Non-Linear Stochastic Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
(
6
), pp.
882
903
.
3.
James
,
F.
, 1980, “
Monte Carlo Theory and Practice
,”
Rep. Prog. Phys.
0034-4885,
43
(
9
), pp.
1145
1189
.
4.
Decker
,
M. K.
, 1991, “
The Monte-Carlo Theory in Science and Engineering: Theory and Application
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
(
1
), pp.
463
483
.
5.
Schueller
,
G. I.
, 2001, “
Computational Stochastic Mechanics—Recent Advances
,”
Comput. Struc.
,
79
(
22–25
), pp.
2225
2234
.
6.
Shinozuka
,
M.
, 1972, “
Monte-Carlo Solution of Structural Dynamics
,”
Comput. Struct.
0045-7949,
2
(
5–6
), pp.
855
874
.
7.
Spanos
,
P. D.
, and
Zeldin
,
B. A.
, 1998, “
Monte Carlo Treatment of Random Fields: A Broad Perspective
,”
Appl. Mech. Rev.
0003-6900,
51
, pp.
219
237
.
8.
Lepage
,
S.
, 2006, “
Stochastic Finite Element Method for the Modeling of Thermo Elastic Damping in Micro-Resonators
,” Ph.D. thesis, Université de Liège, Belgium.
9.
Cecchi
,
A.
, and
Sab
,
K.
, 2009, “
Discrete and Continuous Models for In Plane Loaded Random Elastic Brickwork
,”
Eur. J. Mech. A/Solids
0997-7538,
28
(
3
), pp.
610
625
.
10.
Basudeb
,
B.
, and
Subrata
,
C.
, 2002, “
NE MCS Technique for Stochastic Structural Response Sensitivity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
(
49–50
), pp.
5631
5645
.
11.
Klieber
,
R. G.
, and
Hien
,
P. D.
, 1992,
The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation
,
Wiley
,
England
.
12.
Choi
,
S. -K.
,
Ramana
,
V. G.
,
Robert
,
A. C.
, and
Chris
,
L. P.
, 2004, “
Polynomial Chaos Expansion With Latin Hypercube Sampling for Estimating Response Variability
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1191
1198
.
13.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Probabilistic Finite Elements for Non Linear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
56
(
1
), pp.
61
81
.
14.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Random Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
(
10
), pp.
1831
1845
.
15.
Ang
,
A. H. S.
, and
Tang
,
W. K.
, 1975,
Probability Concepts in Engineering Planning and Design, Vol. 1: Basic Principles
,
Wiley
,
New York
.
16.
Tracy
,
J. J.
, and
Padoen
,
G. C.
, 1989, “
Effect of Delamination on the Natural Frequencies of the Composite Laminates
,”
J. Compos. Mater.
0021-9983,
23
(
12
), pp.
1200
1215
.
17.
Lakshmi Narayana
,
K.
, and
Jebraj
,
C.
, 1999, “
Sensitivity Analysis of Local/Global Modal Parameters for Identification of a Crack in a Beam
,”
J. Sound Vib.
0022-460X,
228
(
5
), pp.
977
994
.
18.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Mahapatra
,
D. R.
, 2008,
Spectral Finite Element Method
,
Springer-Verlag
,
New York
.
19.
Horr
,
A. M.
, and
Safi
,
M.
, 2003, “
Full Dynamic Analysis of Offshore Platform Structures Using Exact Timoshenko Pipe Element
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
125
(
3
), pp.
168
175
.
20.
Pao
,
Y. -H.
,
Keh
,
D. -C.
, and
Samuel
,
M. H.
, 1999, “
Dynamic Response and Wave Propagation in Plane Trusses and Frames
,”
AIAA J.
0001-1452,
37
, pp.
594
603
.
21.
Nagem
,
R. J.
, and
Williams
,
J. H.
, 1989, “
Dynamic Analysis of Large Space Structure Using Transfer Function Matrices and Joint Coupling Matrices
,”
Mech. Struct. Mach.
0890-5452,
17
, pp.
349
371
.
22.
Doyle
,
J. F.
, 1988, “
A Spectrally Formulated Finite Element for Longitudinal Wave Propagation
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
3
, pp.
1
5
.
23.
Doyle
,
J. F.
, and
Farris
,
T. N.
, 1990, “
A Spectrally Formulated Finite Element for Flexural Wave Propagation in Beams
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
5
, pp.
13
23
.
24.
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Shankar
,
T. S.
, 2003, “
A Spectral Finite Element Model for Analysis of Axial-Flexural-Shear Coupled Wave Propagation in Laminated Composite Beams
,”
Compos. Struct.
0263-8223,
59
(
1
), pp.
67
88
.
25.
Nag
,
A.
,
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Shankar
,
T. S.
, 2003, “
A Spectral Finite Element With Embedded Delamination for Modeling of Wave Scattering in Composite Beams
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
2187
2200
.
26.
Mujumdar
,
P. M.
, and
Suryanarayan
,
S.
, 1988, “
Flexural Vibration of Beams With Delamination
,”
J. Sound Vib.
0022-460X,
125
(
3
), pp.
441
461
.
27.
Farris
,
T. N.
, and
Doyle
,
J. F.
, 1991, “
Global/Local Approach for Lengthwise Crack in Beams: Static Analysis
,”
Int. J. Fract.
0376-9429,
50
, pp.
131
141
.
28.
Chakraborty
,
A.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
, 2002, “
Finite Element Analysis of Free Vibration and Wave Propagation in Asymmetric Composite Beams With Structural Discontinuities
,”
Compos. Struct.
0263-8223,
55
(
1
), pp.
23
36
.
29.
Sreekanth Kumar
,
D.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
, 2004, “
A Spectral Finite Element for Wave Propagation and Structural Diagnostic Analysis of Composite Beam With Transverse Crack
,”
Finite Elem. Anal. Des.
,
40
, pp.
1729
1751
.
30.
Doyle
,
J. F.
, 1997,
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms
,
Springer-Verlag
,
New York
.
31.
Ajith
,
V.
, and
Gopalakrishnan
,
S.
, 2010, “
Spectral Element Approach to Wave Propagation in Uncertain Beam Structures
,”
J. Mech. Mater. Struct.
1559-3959,
5
(
4
), pp.
637
659
.
32.
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Shankar
,
T. S.
, 2000, “
Spectral-Element Based Solution for Wave Propagation Analysis of Multiply Connected Composite Beams
,”
J. Sound Vib.
0022-460X,
237
(
5
), pp.
819
836
.
33.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.