Failures in structures and machine elements can be prevented through early detection of fatigue cracks using various nondestructive testing methods. Vibration testing forms one of the most effective and recent one among these methods. There are mainly two approaches to crack detection through vibration testing: open crack model and breathing crack model. The present study is based on breathing crack model, in which the nonlinear vibration response under harmonic excitation is formulated through Volterra series and higher order frequency response functions. Bilinear stiffness characteristic of a cracked cantilever beam is approximated by a truncated polynomial series and response amplitudes of various harmonics are investigated for both qualitative and quantitative characterization. A new procedure is suggested whereby the presence of a breathing crack in a structure can be first identified and then the severity of the damage can be estimated through harmonic probing.

1.
Ismail
,
F.
,
Ibrahim
,
A.
, and
Martin
,
H. R.
, 1990, “
Identification of Fatigue Cracks From Vibration Testing
,”
J. Sound Vib.
0022-460X,
140
(
2
), pp.
305
317
.
2.
Ostachowicz
,
W. M.
, and
Krawczuk
,
M.
, 1991, “
Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam
,”
J. Sound Vib.
0022-460X,
150
, pp.
191
201
.
3.
Chondros
,
T. G.
, and
Dimarogonas
,
A. D.
, 1998, “
Vibration of a Cracked Cantilever Beam
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
742
746
.
4.
Chinchalkar
,
S.
, 2001, “
Determination of Crack Location in Beams Using Natural Frequencies
,”
J. Sound Vib.
0022-460X,
247
(
3
), pp.
417
429
.
5.
Sinha
,
J. K.
,
Friswell
,
M. I.
, and
Edwards
,
S.
, 2002, “
Simplified Models for the Location of Cracks in Beam Structures Using Measured Vibration Data
,”
J. Sound Vib.
0022-460X,
251
(
1
), pp.
13
38
.
6.
Panteliou
,
S. D.
,
Chandros
,
T. G.
,
Argyrakis
,
V. C.
, and
Dimaragonas
,
A. D.
, 2001, “
Damping Factor as an Indicator of Crack Severity
,”
J. Sound Vib.
0022-460X,
241
, pp.
235
245
.
7.
Cheng
,
S. M.
,
Wu
,
X. J.
, and
Wallace
,
W.
, 1999, “
Vibrational Response of a Beam With a Breathing Crack
,”
J. Sound Vib.
0022-460X,
225
(
1
), pp.
201
208
.
8.
Chu
,
Y. C.
, and
Shen
,
M. -H. H.
, 1992, “
Analysis of Forced Bilinear Oscillators and the Application to Cracked Beam Dynamics
,”
AIAA J.
0001-1452,
30
, pp.
2512
2519
.
9.
Shen
,
M. -H. H.
, and
Chu
,
Y. C.
, 1992, “
Vibrations of Beam With a Fatigue Crack
,”
Comput. Struct.
0045-7949,
45
(
1
), pp.
79
93
.
10.
Bayly
,
P. V.
, 1996, “
On the Spectral Signature of Weakly Bilinear Oscillators
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
352
361
.
11.
Chati
,
M.
,
Rand
,
R.
, and
Mukherjee
,
S.
, 1997, “
Modal Analysis of a Cracked Beam
,”
J. Sound Vib.
0022-460X,
207
(
2
), pp.
249
270
.
12.
Rivola
,
A.
, and
White
,
P. R.
, 1998, “
Bispectral Analysis of the Bilinear Oscillator With Application to the Detection of Fatigue Cracks
,”
J. Sound Vib.
0022-460X,
216
(
5
), pp.
889
910
.
13.
Chondros
,
T. G.
, 2001, “
The Continuous Flexibility Method for Crack Identification
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
(
10
), pp.
643
650
.
14.
Tsyfansky
,
S. L.
, and
Beresnevich
,
V. I.
, 2000, “
Non-Linear Vibration Method for Detection of Fatigue Cracks in Aircraft Wings
,”
J. Sound Vib.
0022-460X,
236
, pp.
49
60
.
15.
Chondros
,
T. G.
, and
Dimarogonas
,
A. D.
, 2001, “
Vibration of a Beam With a Breathing Crack
,”
J. Sound Vib.
0022-460X,
239
(
1
), pp.
57
67
.
16.
Kisa
,
M.
, and
Brandon
,
J. A.
, 2000, “
The Effects of Closure of Cracks on the Dynamics of a Cracked Cantilever Beam
,”
J. Sound Vib.
0022-460X,
238
(
1
), pp.
1
18
.
17.
Andreaus
,
U.
,
Casini
,
P.
, and
Vestroni
,
F.
, 2007, “
Nonlinear Dynamics of a Cracked Cantilever Beam Under Harmonic Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
566
575
.
18.
Saavedra
,
P. N.
, and
Cuitino
,
L. A.
, 2001, “
Crack Detection and Vibration Behavior of Cracked Beams
,”
Comput. Struct.
0045-7949,
79
, pp.
1451
1459
.
19.
Schetzen
,
M.
, 1980,
The Volterra and Wiener Theories of Nonlinear Systems
,
Wiley
,
New York
.
20.
Chatterjee
,
A.
, and
Vyas
,
N. S.
, 2003, “
Nonlinear Parameter Estimation in Rotor Bearing System Using Volterra Series and Method of Harmonic Probing
,”
ASME J. Vibr. Acoust.
0739-3717,
125
(
3
), pp.
299
306
.
21.
Peng
,
Z. K.
,
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2007, “
Crack Detection Using Nonlinear Output Frequency Response Functions
,”
J. Sound Vib.
0022-460X,
301
, pp.
777
788
.
22.
Chatterjee
,
A.
, and
Vyas
,
N. S.
, 2003, “
Nonlinear Parameter Estimation With Volterra Series Using Method of Recursive Iteration Through Harmonic Probing
,”
J. Sound Vib.
0022-460X,
268
, pp.
657
678
.
23.
Karthikeyan
,
K.
,
Tiwari
,
R.
, and
Talukdar
,
S.
, 2007, “
Crack Localisation and Sizing in a Beam Based on the Free and Forced Response Measurement
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
1362
1385
.
24.
Papadopoulos
,
C. A.
, 2008, “
The Strain Energy Release Approach for Modeling Cracks in Rotors: A State of the Art Review
,”
Mech. Syst. Signal Process.
0888-3270,
22
, pp.
763
789
.
25.
Sekhar
,
A. S.
, 2008, “
Mulltiple Cracks Effects and Identification
,”
Mech. Syst. Signal Process.
0888-3270,
22
, pp.
845
878
.
You do not currently have access to this content.