Nested carbon nanotubes exhibit telescopic oscillatory motion with frequencies in the gigahertz range. In this paper, our previously proposed semi-analytical expression for the interaction force between two concentric carbon nanotubes is used to solve the equation of motion. That expression also enables a new semi-analytical expression for the precise evaluation of oscillation frequency to be introduced. Alternatively, an algebraic frequency formula derived based on the simplifying assumption of constant van der Waals force is also given. Based on the given formulas, a thorough study on different aspects of operating frequencies under various system parameters is conducted, which permits fresh insight into the problem. Some notable improvements over the previously drawn conclusions are made. The strong dependence of oscillatory frequency on system parameters including the extrusion distance and initial velocity of the core as initial conditions for the motion is shown. Interestingly, our results indicate that there is a special initial velocity at which oscillatory frequency is unique for any arbitrary length of the core. A particular relationship between the escape velocity (the minimum initial velocity beyond which the core will leave the outer nanotube) and this specific initial velocity is also revealed.

1.
Radushkevich
,
L. V.
, and
Lukyanovich
,
V. M.
, 1952, “
O strukture ugleroda, Obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte
,”
Zurn. Fisic. Chim.
,
26
, pp.
88
95
.
2.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
3.
Monthioux
,
M.
, and
Kuznetsov
,
V. L.
, 2006, “
Who Should Be Given the Credit for the Discovery of Carbon Nanotubes?
,”
Carbon
0008-6223,
44
, pp.
1621
1623
.
4.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
5.
Sinnott
,
S. B.
, and
Andrews
,
R.
, 2001, “
Carbon Nanotubes: Synthesis, Properties and Applications
,”
Crit. Rev. Solid State Mater. Sci.
1040-8436,
26
, pp.
145
249
.
6.
Drexler
,
K. E.
, 1992,
Nanosystems: Molecular Machinery, Manufacturing and Computation
,
Wiley
,
New York
, p.
97
.
7.
Forro
,
L.
, 2000, “
Nanotechnology: Beyond Gedanken Experiments
,”
Science
0036-8075,
289
, pp.
560
561
.
8.
Liu
,
P.
,
Zhang
,
Y. W.
, and
Lu
,
C.
, 2005, “
Oscillatory behavior of C60-nanotube oscillators: A molecular-dynamics study
,”
J. Appl. Phys.
0021-8979,
97
, p.
094313
.
9.
Kang
,
J. W.
,
Song
,
K. O.
,
Hwang
,
H. J.
, and
Jiang
,
Q.
, 2006, “
Nanotube Oscillator Based on a Short Single-Walled Carbon Nanotube Bundle
,”
Nanotechnology
0957-4484,
17
, pp.
2250
2258
.
10.
Hilder
,
T. A.
, and
Hill
,
J. M.
, 2007, “
Oscillating Carbon Nanotori Along Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
75
, p.
125415
.
11.
Yu
,
M. -F.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
, 2000, “
Controlled Sliding and Pull Out of Nested Shells in Individual Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
1089-5647,
104
, pp.
8764
8767
.
12.
Zheng
,
Q.
, and
Jiang
,
Q.
, 2002, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
045503
.
13.
Zheng
,
Q.
,
Liu
,
J. Z.
, and
Jiang
,
Q.
, 2002, “
Excess van der Waals Interaction Energy of a Multiwalled Carbon Nanotube With an Extruded Core and the Induced Core Oscillation
,”
Phys. Rev. B
0556-2805,
65
, p.
245409
.
14.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvao
,
D. S.
, 2003, “
Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
0031-9007,
90
, p.
055504
.
15.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvao
,
D. S.
, 2004, “
Gigahertz Nanomechanical Oscillators Based on Carbon Nanotubes
,”
Nanotechnology
0957-4484,
15
, p.
S184
.
16.
Rivera
,
J. L.
,
McCabe
,
C.
, and
Cummings
,
P. T.
, 2003, “
Oscillatory Behavior of Double-Walled Nanotubes Under Extension: A Simple Nanoscale Damped Spring
,”
Nano Lett.
1530-6984,
3
, pp.
1001
1005
.
17.
Rivera
,
J. L.
,
McCabe
,
C.
, and
Cummings
,
P. T.
, 2005, “
The Oscillatory Damped Behavior of Incommensurate Double-Walled Carbon Nanotubes
,”
Nanotechnology
0957-4484,
16
, pp.
186
198
.
18.
Liu
,
P.
,
Zhang
,
Y. W.
, and
Lu
,
C.
, 2005, “
Oscillatory Behavior of Gigahertz Oscillators Based on Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
98
, p.
014301
.
19.
Guo
,
W.
,
Guo
,
Y.
,
Gao
,
H.
,
Zheng
,
Q.
, and
Zhong
,
W.
, 2003, “
Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
125501
.
20.
Zhao
,
Y.
,
Ma
,
C. -C.
,
Chen
,
G. H.
, and
Jiang
,
Q.
, 2003, “
Energy Dissipation Mechanisms in Carbon Nanotube Oscillators
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
175504
.
21.
Ma
,
C. -C.
,
Zhao
,
Y.
,
Yam
,
C. -Y.
,
Chen
,
G. H.
, and
Jiang
,
Q.
, 2005, “
A Tribological Study of Double-Walled and Triple-Walled Carbon Nanotube Oscillators
,”
Nanotechnology
0957-4484,
16
, pp.
1253
1264
.
22.
Servantie
,
J.
, and
Gaspard
,
P.
, 2006, “
Translational Dynamics and Friction in Double-Walled Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
73
, p.
125428
.
23.
Kang
,
J. W.
, and
Hwang
,
H. J.
, 2006, “
Operating Frequency in a Triple-Walled Carbon-Nanotube Oscillator
,”
J. Korean Phys. Soc.
0374-4884,
49
, pp.
1488
1492
.
24.
Su
,
H.
,
Goddard
,
W. A.
, III
, and
Zhao
,
Y.
, 2006, “
Dynamic Friction Force in a Carbon Peapod Oscillator
,”
Nanotechnology
0957-4484,
17
, pp.
5691
5695
.
25.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2007,
Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. II. Oscillatory Behavior
,”
Proc. R. Soc. London, Ser. A
0950-1207,
463
, pp.
477
494
.
26.
Thamwattana
,
N.
,
Cox
,
B. J.
, and
Hill
,
J. M.
, 2008, “
Carbon Molecules Oscillating in Carbon Nanotube Bundles
,”
Proceedings of the International Conference on Nanoscience and Nanotechnology
, Melbourne, Australia, Feb. 25–29, pp.
230
233
.
27.
Hilder
,
T. A.
, and
Hill
,
J. M.
, 2007, “
Orbiting Atoms and C60 Fullerenes Inside Carbon Nanotori
,”
J. Appl. Phys.
0021-8979,
101
, p.
064319
.
28.
Henrard
,
L.
,
Hernández
,
E.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1999, “
Van der Waals Interaction in Nanotube Bundles: Consequences on Vibrational Modes
,”
Phys. Rev. B
0556-2805,
60
, pp.
R8521
R8524
.
29.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
, 2000, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Phys. Rev. B
0556-2805,
62
, pp.
13104
13110
.
30.
Hodak
,
M.
, and
Girifalco
,
L. A.
, 2001, “
Fullerenes Inside Carbon Nanotubes and Multi-Walled Carbon Nanotubes: Optimum and Maximum Sizes
,”
Chem. Phys. Lett.
0009-2614,
350
, pp.
405
411
.
31.
Girifalco
,
L. A.
, 1992, “
Molecular Properties of Fullerene in the Gas and Solid Phases
,”
J. Phys. Chem.
0022-3654,
96
, pp.
858
861
.
32.
Girifalco
,
L. A.
, 1995, “
Extended Mie-Grüneisen Theory Applied to C60 in the Disordered fcc Phase
,”
Phys. Rev. B
0556-2805,
52
, pp.
9910
9916
.
33.
Kniaz
,
K.
,
Girifalco
,
L. A.
, and
Fischer
,
J. E.
, 1995, “
Application of a Spherically Averaged Potential to Solid C70 in the Disordered Phase
,”
J. Phys. Chem.
0022-3654,
99
, pp.
16804
16806
.
34.
Kniaź
,
K.
,
Fischer
,
J. E.
,
Girifalco
,
L. A.
,
McGhie
,
A. R.
,
Strongin
,
R. M.
, and
Smith
,
A. B.
, 1995, “
Fullerene Alloys
,”
Solid State Commun.
0038-1098,
96
, pp.
739
743
.
35.
Baowan
,
D.
, and
Hill
,
J. M.
, 2007, “
Force Distribution for Double-Walled Carbon Nanotubes and Gigahertz Oscillators
,”
Z. Angew. Math. Phys.
0044-2275,
58
, pp.
857
875
.
36.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2006, “
Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. I. Acceptance and Suction Energies
,”
Proc. R. Soc. London, Ser. A
0950-1207,
463
, pp.
461
476
.
37.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2007, “
Mechanics of Spheroidal Fullerenes and Carbon Nanotubes for Drug and Gene Delivery
,”
Q. J. Mech. Appl. Math.
0033-5614,
60
, pp.
231
253
.
38.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Spherical and Spheroidal Fullerenes Entering Carbon Nanotubes
,”
Curr. Appl. Phys.
1567-1739,
8
, pp.
249
252
.
39.
Baowan
,
D.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Suction Energy and Offset Configuration for Double-Walled Carbon Nanotubes
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
13
, pp.
1431
1447
.
40.
Hilder
,
T. A.
, and
Hill
,
J. M.
, 2008, “
Carbon Nanotubes as Drug Delivery Nanocapsules
,”
Curr. Appl. Phys.
1567-1739,
8
, pp.
258
261
.
41.
Ansari
,
R.
, and
Motevalli
,
B.
, 2009, “
The Effects of Geometrical Parameters on Force Distributions and Mechanics of Carbon Nanotubes: A Critical Study
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
, pp.
4246
.
42.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Mechanics of Nanotubes Oscillating in Carbon Nanotube Bundles
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
, pp.
691
710
.
You do not currently have access to this content.