In this paper, two novel and different methods are applied to nonlinear oscillators. It has been found that the coupled method of homotopy perturbation method and variational formulation and amplitude-frequency formulation work very well for the whole range of initial amplitudes. The analytical approximate frequency and the corresponding periodic solution are valid for small as well as large amplitudes of oscillation. Contrary to the conventional methods, only one iteration leads to high accuracy of the solutions. Some examples are given to illustrate the accuracy and effectiveness of these methods.

1.
He
,
J. H.
, 2000, “
A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
37
43
.
2.
He
,
J. H.
, 2007, “
Variational Approach for Nonlinear Oscillators
,”
Chaos, Solitons Fractals
0960-0779,
34
, pp.
1430
1439
.
3.
Marinca
,
V.
, and
Herisanu
,
N.
, 2010, “
Optimal Homotopy Perturbation Method for Strongly Nonlinear Differential Equations
,”
Nonlinear Science Letters A
,
1
(
3
), pp.
273
280
.
4.
Zhang
,
H. L.
, 2008, “
Application of He’s Frequency-Amplitude Formulation to an x(1/3) Force Nonlinear Oscillator
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
9
(
3
), pp.
297
300
.
5.
Zhao
,
L.
, 2008, “
Chinese Mathematics for Nonlinear Oscillators
,”
Topol. Methods Nonlinear Anal.
1230-3429,
31
(
2
), pp.
383
387
.
6.
He
,
J. H.
, 2006, “
Some Asymptotic Methods for Strongly Nonlinear Equations
,”
Int. J. Mod. Phys. B
0217-9792,
20
, pp.
1141
1199
.
7.
Demirbag
,
S. A.
, and
Kaya
,
M. O.
, 2010, “
Application of He’s Max-Min Approach to a Generalized Nonlinear Discontinuity Equation
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
11
, pp.
269
272
.
8.
Afrouzi
,
G. A.
,
Ganji
,
D. D.
, and
Talarposhti
,
R. A.
, 2009, “
He’s Energy Balance Method for Nonlinear Oscillators With Discontinuities
,”
Int. J. Nonlin. Sci. Num.
,
10
, pp.
301
304
.
9.
Zhang
,
H. L.
,
Xu
,
Y. G.
, and
Chang
,
J. R.
, 2009, “
Application of He’s Energy Balance Method to a Nonlinear Oscillator With Discontinuity
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
10
, pp.
207
214
.
10.
Ganji
,
D. D.
,
Ranjbar Malidarreh
,
N.
, and
Akbarzade
,
M.
, 2009, “
Comparison of Energy Balance Period for Arising Nonlinear Oscillator Equations (He’s Energy Balance Period for Nonlinear Oscillators With and Without Discontinuities)
,”
Acta Appl. Math.
0167-8019,
108
, pp.
353
362
.
11.
Pashaei
,
H.
,
Ganji
,
D. D.
, and
Akbarzade
,
M.
, 2008, “
Application of the Energy Balance Method for Strongly Nonlinear Oscillators
,”
Prog. Electromagn. Res.
1043-626X,
2
, pp.
47
56
.
12.
He
,
J. H.
, 2006, “
Non Perturbative Methods for Strongly Nonlinear Problems
,” dissertation.de (Verlag im internet GmbH, Berlin, 2006).
13.
Zengin
,
F. O.
,
Kaya
,
M. O.
, and
Demirbag
,
S. A.
, 2008, “
Modified Application of Parameter-Expansion Method to Nonlinear Oscillators With Discontinuities
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
9
, pp.
267
270
.
14.
Demirbag
,
S. A.
,
Kaya
,
M. O.
, and
Zengin
,
F. O.
, 2009, “
Application of Modified He’s Variational Method to Nonlinear Oscillators With Discontinuities
,”
Int. J. Nonlin. Sci. Num.
,
10
(
1
), pp.
27
31
.
15.
Herisanu
,
N.
, and
Marinca
,
V.
, 2010, “
A Modified Variational Iteration Method for Strongly Nonlinear Problems
,”
Nonlinear Science Letters A
,
1
, pp.
183
192
.
16.
Hu
,
H.
, 2007, “
Solution of a Mixed Parity Nonlinear Oscillator: Harmonic Balance
,”
J. Sound Vib.
0022-460X,
299
, pp.
331
338
.
17.
Hu
,
H.
, 2006, “
Solution of a Quadratic Nonlinear Oscillator by the Method of Harmonic Balance
,”
J. Sound Vib.
0022-460X,
293
, pp.
462
468
.
You do not currently have access to this content.