In this paper, two novel and different methods are applied to nonlinear oscillators. It has been found that the coupled method of homotopy perturbation method and variational formulation and amplitude-frequency formulation work very well for the whole range of initial amplitudes. The analytical approximate frequency and the corresponding periodic solution are valid for small as well as large amplitudes of oscillation. Contrary to the conventional methods, only one iteration leads to high accuracy of the solutions. Some examples are given to illustrate the accuracy and effectiveness of these methods.
Issue Section:
Technical Briefs
1.
He
, J. H.
, 2000, “A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems
,” Int. J. Non-Linear Mech.
0020-7462, 35
, pp. 37
–43
.2.
He
, J. H.
, 2007, “Variational Approach for Nonlinear Oscillators
,” Chaos, Solitons Fractals
0960-0779, 34
, pp. 1430
–1439
.3.
Marinca
, V.
, and Herisanu
, N.
, 2010, “Optimal Homotopy Perturbation Method for Strongly Nonlinear Differential Equations
,” Nonlinear Science Letters A
, 1
(3
), pp. 273
–280
.4.
Zhang
, H. L.
, 2008, “Application of He’s Frequency-Amplitude Formulation to an x(1/3) Force Nonlinear Oscillator
,” Int. J. Nonlinear Sci. Numer. Simul.
1565-1339, 9
(3
), pp. 297
–300
.5.
Zhao
, L.
, 2008, “Chinese Mathematics for Nonlinear Oscillators
,” Topol. Methods Nonlinear Anal.
1230-3429, 31
(2
), pp. 383
–387
.6.
He
, J. H.
, 2006, “Some Asymptotic Methods for Strongly Nonlinear Equations
,” Int. J. Mod. Phys. B
0217-9792, 20
, pp. 1141
–1199
.7.
Demirbag
, S. A.
, and Kaya
, M. O.
, 2010, “Application of He’s Max-Min Approach to a Generalized Nonlinear Discontinuity Equation
,” Int. J. Nonlinear Sci. Numer. Simul.
1565-1339, 11
, pp. 269
–272
.8.
Afrouzi
, G. A.
, Ganji
, D. D.
, and Talarposhti
, R. A.
, 2009, “He’s Energy Balance Method for Nonlinear Oscillators With Discontinuities
,” Int. J. Nonlin. Sci. Num.
, 10
, pp. 301
–304
.9.
Zhang
, H. L.
, Xu
, Y. G.
, and Chang
, J. R.
, 2009, “Application of He’s Energy Balance Method to a Nonlinear Oscillator With Discontinuity
,” Int. J. Nonlinear Sci. Numer. Simul.
1565-1339, 10
, pp. 207
–214
.10.
Ganji
, D. D.
, Ranjbar Malidarreh
, N.
, and Akbarzade
, M.
, 2009, “Comparison of Energy Balance Period for Arising Nonlinear Oscillator Equations (He’s Energy Balance Period for Nonlinear Oscillators With and Without Discontinuities)
,” Acta Appl. Math.
0167-8019, 108
, pp. 353
–362
.11.
Pashaei
, H.
, Ganji
, D. D.
, and Akbarzade
, M.
, 2008, “Application of the Energy Balance Method for Strongly Nonlinear Oscillators
,” Prog. Electromagn. Res.
1043-626X, 2
, pp. 47
–56
.12.
He
, J. H.
, 2006, “Non Perturbative Methods for Strongly Nonlinear Problems
,” dissertation.de (Verlag im internet GmbH, Berlin, 2006).13.
Zengin
, F. O.
, Kaya
, M. O.
, and Demirbag
, S. A.
, 2008, “Modified Application of Parameter-Expansion Method to Nonlinear Oscillators With Discontinuities
,” Int. J. Nonlinear Sci. Numer. Simul.
1565-1339, 9
, pp. 267
–270
.14.
Demirbag
, S. A.
, Kaya
, M. O.
, and Zengin
, F. O.
, 2009, “Application of Modified He’s Variational Method to Nonlinear Oscillators With Discontinuities
,” Int. J. Nonlin. Sci. Num.
, 10
(1
), pp. 27
–31
.15.
Herisanu
, N.
, and Marinca
, V.
, 2010, “A Modified Variational Iteration Method for Strongly Nonlinear Problems
,” Nonlinear Science Letters A
, 1
, pp. 183
–192
.16.
Hu
, H.
, 2007, “Solution of a Mixed Parity Nonlinear Oscillator: Harmonic Balance
,” J. Sound Vib.
0022-460X, 299
, pp. 331
–338
.17.
Hu
, H.
, 2006, “Solution of a Quadratic Nonlinear Oscillator by the Method of Harmonic Balance
,” J. Sound Vib.
0022-460X, 293
, pp. 462
–468
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.