An exact frequency analysis of a rotating beam with an attached tip mass is addressed in this paper while the beam undergoes coupled torsional-bending vibrations. The governing coupled equations of motion and the corresponding boundary condition are derived in detail using the extended Hamilton principle. It has been shown that the source of coupling in the equations of motion is the rotation and that the equations are linked through the angular velocity of the base. Since the beam-tip-mass system at hand serves as the building block of many vibrating gyroscopic systems, which require high precision, a closed-form frequency equation of the system should be derived to determine its natural frequencies. The frequency analysis is the basis of the time domain analysis, and hence, the exact frequency derivation would lead to accurate time domain results, too. Control strategies of the aforementioned gyroscopic systems are mostly based on their resonant condition, and hence, acquiring knowledge about their exact natural frequencies could lead to a better control of the system. The parameter sensitivity analysis has been carried out to determine the effects of various system parameters on the natural frequencies. It has been shown that even the undamped systems undergoing base rotation will have complex eigenvalues, which demonstrate a damping-type behavior.

1.
Goel
,
R. P.
, 1973, “
Vibrations of a Beam Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
821
822
.
2.
Laura
,
P. A. A.
,
Pombo
,
J. L.
, and
Susemihl
,
E. A.
, 1974, “
A Note on the Vibrations of a Clamped-Free Beam With a Mass at the Free End
,”
J. Sound Vib.
0022-460X,
37
, pp.
161
168
.
3.
Bruch
,
J. C.
, Jr.
, and
Mitchell
,
T. P.
, 1987, “
Vibrations of a Mass-Loaded Clamped-Free Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
114
, pp.
341
345
.
4.
Furta
,
S. D.
, 2003, “
Linear Vibrations of a Rotating Elastic Beam With an Attached Point Mass
,”
J. Eng. Math.
0022-0833,
46
, pp.
165
188
.
5.
Yan
,
A.
,
Wang
,
G.
,
Xu
,
H.
, and
Sheng
,
Y.
, 2004, “
Reduction of Residual Vibration in a Rotating Flexible Beam
,”
Acta Mech.
0001-5970,
171
, pp.
137
149
.
6.
Al-Said
,
S.
,
Naji
,
M.
, and
Al-Shukry
,
A.
, 2006, “
Flexural Vibration of Rotating Cracked Timoshenko Beam
,”
J. Vib. Control
1077-5463,
12
, pp.
1271
1287
.
7.
Wei
,
K.
,
Meng
,
G.
,
Zhou
,
S.
, and
Liu
,
J.
, 2006, “
Vibration Control of Variable Speed/Acceleration Rotating Beams Using Smart Materials
,”
J. Sound Vib.
0022-460X,
298
, pp.
1150
1158
.
8.
Yardimoglu
,
B.
, 2006, “
Vibration Analysis of Rotating Tapered Timoshenko Beams by a New Finite Element Model
,”
Shock Vib.
1070-9622,
13
, pp.
117
126
.
9.
Banerjee
,
J. R.
,
Su
,
H.
, and
Jackson
,
D. R.
, 2006, “
Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
0022-460X,
298
, pp.
1034
1054
.
10.
Lin
,
S.
,
Mao
,
I.
, and
Lin
,
J.
, 2007, “
Vibration of a Rotating Smart Beam
,”
AIAA J.
0001-1452,
45
, pp.
382
389
.
11.
Lee
,
S. Y.
, and
Sheu
,
J. J.
, 2007, “
Free Vibration of an Extensible Rotating Inclined Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
304
, pp.
606
624
.
12.
Lee
,
S. Y.
, and
Sheu
,
J. J.
, 2007, “
Free Vibrations of a Rotating Inclined Beam
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
406
414
.
13.
Lee
,
S.
,
Sheu
,
J.
, and
Lin
,
S.
, 2008, “
In-Plane Vibrational Analysis of Rotating Curved Beam With Elastically Restrained Root
,”
J. Sound Vib.
0022-460X,
315
, pp.
1086
1102
.
14.
Huang
,
C.
,
Lin
,
W.
, and
Hsiao
,
K.
, 2009, “
Free Flapping Vibration of Rotating Inclined Euler Beams
,”
Proceedings of the World Academy of Science, Engineering and Technology
,
56
, pp.
604
610
.
15.
Turhan
,
O.
, and
Bulut
,
G.
, 2009, “
On Nonlinear Vibrations of a Rotating Beam
,”
J. Sound Vib.
0022-460X,
322
, pp.
314
335
.
16.
Das
,
D.
,
Sahoo
,
P.
, and
Saha
,
K.
, 2009, “
Out-of-Plane Free Vibration Analysis of Rotating Tapered Beams in Post-Elastic Regime
,”
Mater. Des.
0264-1275,
30
, pp.
2875
2894
.
17.
Yuksel
,
S.
, and
Aksoy
,
T. M.
, 2009, “
Flexural Vibrations of a Rotating Beam Subjected to Different Base Excitations
,”
Gazi University Journal of Science
,
22
, pp.
33
40
; see http://www.fbe.gazi.edu.tr/dergi/ojs/index.php/GUJS/article/viewArticle96http://www.fbe.gazi.edu.tr/dergi/ojs/index.php/GUJS/article/viewArticle96.
18.
Ozgumus
,
O. O.
, and
Kaya
,
M. O.
, 2010, “
Vibration Analysis of a Rotating Tapered Timoshenko Beam Using DTM
,”
Meccanica
0025-6455,
45
, pp.
33
42
.
19.
Kaya
,
M. O.
, and
Ozgumus
,
O. O.
, 2010, “
Energy Expressions and Free Vibration Analysis of a Rotating Uniform Timoshenko Beam Featuring Bending-Torsion Coupling
,”
J. Vib. Control
1077-5463,
16
, pp.
915
934
.
20.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
, 1990,
Vibration Problems in Engineering
,
Wiley
,
New York
.
21.
Bercin
,
A. N.
, and
Tanaka
,
M.
, 1997, “
Coupled Flexural-Torsional Vibrations of Timoshenko Beams
,”
J. Sound Vib.
0022-460X,
207
, pp.
47
59
.
22.
Oguamanam
,
D. C. D.
, 2003, “
Free Vibration of Beams With Finite Mass Rigid Tip Load and Flexural-Torsional Coupling
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
963
979
.
23.
Salarieh
,
H.
, and
Ghorashi
,
M.
, 2006, “
Free Vibration of Timoshenko Beam With Finite Mass Rigid Tip Load and Flexural-Torsional Coupling
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
763
779
.
24.
Gokdag
,
H.
, and
Kopmaz
,
O.
, 2005, “
Coupled Bending and Torsional Vibration of a Beam With In-Span and Tip Attachments
,”
J. Sound Vib.
0022-460X,
287
, pp.
591
610
.
25.
Esmaeili
,
M.
,
Jalili
,
N.
, and
Durali
,
M.
, 2007, “
Dynamic Modeling and Performance Evaluation of a Vibrating Beam Microgyroscope Under General Support Motion
,”
J. Sound Vib.
0022-460X,
301
, pp.
146
164
.
26.
Bhadbhade
,
V.
,
Jalili
,
N.
, and
Mahmoodi
,
S. N.
, 2008, “
A Novel Piezoelectrically Actuated Flexural/Torsional Vibrating Beam Gyroscope
,”
J. Sound Vib.
0022-460X,
311
, pp.
1305
1324
.
27.
Bhat
,
B. R.
, and
Wagner
,
H.
, 1976, “
Natural Frequencies of a Uniform Cantilever With a Tip Mass Slender in the Axial Direction
,”
J. Sound Vib.
0022-460X,
45
, pp.
304
307
.
28.
Kim
,
J.
, 2006, “
Rotation Effects on Vibration of Structures Seen From a Rotating Beam Simply Supported Off the Rotation Axis
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
128
, pp.
328
337
.
29.
Dadfarnia
,
M.
,
Jalili
,
N.
,
Xian
,
B.
, and
Dawson
,
D. M.
, 2004, “
A Lyapunov-Based Piezoelectric Controller for Flexible Cartesian Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
347
358
.
30.
Bhat
,
R. B.
, and
Chakraverty
,
S.
, 2007,
Numerical Analysis in Engineering
, Revised Edition,
Alpha Science International
,
Oxford, UK
.
You do not currently have access to this content.