The transverse vibrations of an axially accelerating Euler–Bernoulli beam resting on simple supports are investigated. The supports are at the ends, and there is a support in between. The axial velocity is a sinusoidal function of time varying about a constant mean speed. Since the supports are immovable, the beam neutral axis is stretched during the motion, and hence, nonlinear terms are introduced to the equations of motion. Approximate analytical solutions are obtained using the method of multiple scales. Natural frequencies are obtained for different locations of the support other than end supports. The effect of nonlinear terms on natural frequency is calculated for different parameters. Principal parametric resonance occurs when the velocity fluctuation frequency is equal to approximately twice of natural frequency. By performing stability analysis of solutions, approximate stable and unstable regions were identified. Effects of axial velocity and location of intermediate support on the stability regions have been investigated.

1.
Ulsoy
,
A. G.
,
Mote
,
C. D.
, Jr.
, and
Syzmani
,
R.
, 1978, “
Principal Developments in Band Saw Vibration and Stability Research
,”
Holz Roh-Werkst.
0018-3768,
36
, pp.
273
280
.
2.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1988, “
Current Research on the Vibration and Stability of Axially Moving Materials
,”
Shock Vib. Dig.
0583-1024,
20
(
5
), pp.
3
13
.
3.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1990, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
738
744
.
4.
Wickert
,
J. A.
, 1992, “
Non-Linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
27
, pp.
503
517
.
5.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
, 1997, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
0022-460X,
203
, pp.
815
832
.
6.
Nayfeh
,
A. H.
,
Nayfeh
,
J. F.
, and
Mook
,
D. T.
, 1992, “
On Methods for Continuous Systems With Quadratic and Cubic Nonlinearities
,”
Nonlinear Dyn.
0924-090X,
3
, pp.
145
162
.
7.
Öz
,
H. R.
,
Pakdemirli
,
M.
, and
Özkaya
,
E.
, 1998, “
Transition Behaviour From String to Beam for an Axially Accelerating Material
,”
J. Sound Vib.
0022-460X,
215
(
3
), pp.
571
576
.
8.
Özkaya
,
E.
, and
Pakdemirli
,
M.
, 2000, “
Vibrations of an Axially Accelerating Beam With Small Flexural Stiffness
,”
J. Sound Vib.
0022-460X,
234
(
3
), pp.
521
535
.
9.
Pellicano
,
F.
, and
Zirilli
,
F.
, 1998, “
Boundary Layers and Non-Linear Vibrations in an Axially Moving Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
33
, pp.
691
711
.
10.
Pakdemirli
,
M.
, and
Özkaya
,
E.
, 1998, “
Approximate Boundary Layer Solution of a Moving Beam Problem
,”
Mathematical and Computational Applications
1300-686X,
2
(
3
), pp.
93
100
.
11.
Öz
,
H. R.
, and
Pakdemirli
,
M.
, 1999, “
Vibrations of an Axially Moving Beam With Time-Dependent Velocity
,”
J. Sound Vib.
0022-460X,
227
(
2
), pp.
239
257
.
12.
Öz
,
H. R.
, 2001, “
On the Vibrations of an Axially Travelling Beam on Fixed Supports With Variable Velocity
,”
J. Sound Vib.
0022-460X,
239
(
3
), pp.
556
564
.
13.
Özkaya
,
E.
, and
Öz
,
H. R.
, 2002, “
Determination of Stability Regions of Axially Moving Beams Using Artificial Neural Networks Method
,”
J. Sound Vib.
0022-460X,
252
(
4
), pp.
782
789
.
14.
Pakdemirli
,
M.
, and
Öz
,
H. R.
, 2008, “
Infinite Mode Analysis and Truncation to Resonant Modes of Axially Accelerated Beam Vibrations
,”
J. Sound Vib.
0022-460X,
311
(
3–5
), pp.
1052
1074
.
15.
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2005, “
Steady-State Response of Axially Moving Viscoelastic Beams With Pulsating Speed: Comparison of Two Nonlinear Models
,”
Int. J. Solids Struct.
0020-7683,
42
(
1
), pp.
37
50
.
16.
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2005, “
Stability in Parametric Resonance of Axially Moving Viscoelastic Beams With Time-Dependent Speed
,”
J. Sound Vib.
0022-460X,
284
, pp.
879
891
.
17.
Yang
,
X. D.
, and
Chen
,
L. Q.
, 2005, “
Bifurcation and Chaos of an Axially Accelerating Viscoelastic Beam
,”
Chaos, Solitons Fractals
0960-0779,
23
(
1
), pp.
249
258
.
18.
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2006, “
Vibration and Stability of an Axially Moving Viscoelastic Beam With Hybrid Supports
,”
Eur. J. Mech. A/Solids
0997-7538,
25
, pp.
996
1008
.
19.
Lewandowski
,
R.
, 1989, “
Nonlinear Free Vibrations of Multispan Beams on Elastic Supports
,”
Comput. Struct.
0045-7949,
32
(
2
), pp.
305
312
.
20.
Gürgöze
,
M.
,
Özgür
,
K.
, and
Erol
,
H.
, 1995, “
On the Eigenfrequencies of a Cantilevered Beam With a Tip Mass and In-Span Support
,”
Comput. Struct.
0045-7949,
56
, pp.
85
92
.
21.
Gürgöze
,
M.
, and
Erol
,
H.
, 2001, “
Determination of the Frequency Response Function of a Cantilevered Beam Simply Supported In-Span
,”
J. Sound Vib.
0022-460X,
247
, pp.
372
378
.
22.
Özkaya
,
E.
,
Bağdatli
,
S. M.
, and
Öz
,
H. R.
, 2008, “
Non-Linear Transverse Vibrations and 3:1 Internal Resonances of a Beam With Multiple Supports
,”
ASME J. Vibr. Acoust.
0739-3717,
130
(
2
) p.
021013
.
23.
Özkaya
,
E.
,
Pakdemirli
,
M.
, and
Öz
,
H. R.
, 1997, “
Reply to ‘Comments on Non-Linear Vibrations of a Beam-Mass System Under Different Boundary Conditions’ by K. H. Low
,”
J. Sound Vib.
0022-460X,
207
(
2
), p.
286
.
24.
Öz
,
H. R.
,
Pakdemirli
,
M.
, and
Boyaci
,
H.
, 2001, “
Non-Linear Vibrations and Stability of an Axially Moving Beam With Time Dependent Velocity
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
107
115
.
25.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
26.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
You do not currently have access to this content.