In this study, the performance of a new controllable mount design utilizing a magnetorheological material encapsulated in an elastomer matrix is investigated. A magnetorheological fluid-elastomer (MRF-E) mount is designed and fabricated, and its dynamic performance is studied under harmonic oscillatory vibrations for a wide range of frequencies and various applied magnetic fields. Also, a theoretical analysis is conducted by proposing a three-element phenomenological model for replicating the dynamic behavior of the MRF-E mount under oscillation loadings, and the results are compared with the experimental data. In order to further evaluate the effectiveness of the MRF-E mount for vibration control, a single degree-of-freedom (SDOF) system incorporated with this device is developed. Theoretically, the equation of motion utilizing the proposed phenomenological model is derived to provide performance predictions on the effectiveness of the semiactive device at suppressing unwanted vibrations. Experimentally, a SDOF system constrained to rectilinear motion and composed of a mass, four linear springs, and the MRF-E mount is designed and manufactured. This work demonstrates the performance of the proposed MRF-E mount and its capability in attenuating undesirable system vibrations for a range of small-displacement amplitudes and frequencies.

1.
Ahn
,
Y. K.
,
Ahmadian
,
M.
, and
Morishita
,
S.
, 1999, “
On the Design and Development of a Magnetorheological Mount
,”
Veh. Syst. Dyn.
0042-3114,
32
, pp.
199
216
.
2.
Ahn
,
Y. K.
,
Ha
,
J. Y.
, and
Yang
,
B. S.
, 2004, “
A New Type Controllable Squeeze Film Damper Using an Electromagnet
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
380
383
.
3.
Jolly
,
M. R.
, and
Carlson
,
J. D.
, 1996, “
Controllable Squeeze Film Damping Using Magnetorheological Fluid
,”
Fifth International Conference on New Actuators
, Bremen, Germany, Jun. 26–28.
4.
Sims
,
N. D.
,
Stanway
,
R.
,
Johnson
,
A. R.
, and
Mellor
,
P.
, 2001, “
Design, Testing and Model Validation of an MR Squeeze-Flow Vibration Damper
,”
Smart Structures and Materials 2001: Damping and Isolation, Proceedings of SPIE
, Vol.
4331
, pp.
111
120
.
5.
Zhu
,
C.
,
Jiang
,
J.
,
Robb
,
D. A.
, and
Ewins
,
D. J.
, 2001, “
Active Vibration Control of Rotor System by a Magnetorheological Fluid Damper
,”
Damping and Isolation, Proceedings of the SPIE Conference on Smart Materials and Structures
,
D. J.
Inman
, ed., Vol.
4331
, pp.
121
129
.
6.
Stanway
,
R.
,
Sproston
,
J. L.
,
Prendergast
,
M. J.
,
Case
,
J. R.
, and
Wilne
,
C. E.
, 1992, “
ER Fluids in the Squeeze-Flow Mode: An Application to Vibration Isolation
,”
J. Electrost.
0304-3886,
28
, pp.
89
94
.
7.
Yao
,
G. Z.
,
Qiu
,
Y.
,
Meng
,
G.
,
Fang
,
T.
, and
Fan
,
Y. B.
, 1999, “
Vibration Control of a Rotor System by Disk-Type Electrorheological Damper
,”
J. Sound Vib.
0022-460X,
219
, pp.
175
188
.
8.
Wang
,
X.
,
Zhang
,
P. Q.
,
Tang
,
X.
, and
Tao
,
R.
, 1999, “
Testing and Modeling a Cone-Shaped Squeeze-Film Mode Electrorheological Damper
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
, pp.
748
752
.
9.
Tang
,
X.
,
Wang
,
X.
,
Li
,
W. H.
, and
Zhang
,
P. Q.
, 1998, “
Testing and Modeling of an MR Damper in the Squeeze Flow Mode
,”
Proceedings of the Sixth International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Their Applications
,
M.
Nakano
and
K.
Koyama
, eds.,
World Scientific
,
Singapore
, pp.
870
878
.
10.
York
,
D.
,
Wang
,
X.
, and
Gordaninejad
,
F.
, 2007, “
A New MR Fluid-Elastomer Vibration Isolator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
, pp.
1221
1225
.
11.
Wang
,
X.
,
Gordaninejad
,
F.
, and
Hitchcock
,
G.
, 2004, “
Dynamic Behaviors of Magnetorheological Fluid-Elastomer Composites Under Oscillatory Compression
,”
Damping and Isolation, Proceedings of the SPIE Conference on Smart Materials and Structures
,
K. -W.
Wang
, ed., Vol.
5386
, pp.
250
258
.
12.
Wang
,
X.
,
Gordaninejad
,
F.
, and
Hitchcock
,
G.
, 2005, “
A Magnetorheological Fluid-Elastomer Vibration Isolator
,”
Damping and Isolation, Proceedings of SPIE Conference on Smart Materials and Structures
,
K. -W.
Wang
, ed., Vol.
5760
, pp.
217
225
.
13.
Ginder
,
J. M.
,
Schlotter
,
W. F.
, and
Nicholes
,
M. E.
, 2001, “
Magnetorheological Elastomers in Tunable Vibration Absorbers
,”
Proc. SPIE
0277-786X,
4331
, pp.
103
110
.
14.
Jolly
,
M. R.
,
Carlson
,
J. D.
,
Munoz
,
B. C.
, and
Bullions
,
T. A.
, 1996, “
The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
, pp.
613
622
.
15.
Sahin
,
H.
,
Gordaninejad
,
F.
,
Kavlicoglu
,
B. M.
,
Wang
,
X.
, and
Fuchs
,
A.
, 2007, “
Rheological Behavior of Magnetorheological Grease (MRG)
,”
Proceedings of SPIE, Smart Structures and Materials, Active and Passive Smart Structures and Integrated Systems
,
Y.
Matsuzaki
,
Y. M.
Ahmadian
, and
D.
Leo
, Vol.
6525
, pp.
C1
C7
.
16.
York
,
D.
, 2007, “
A Novel Magnetorheological Fluid-Elastomer Vibration Isolator
,” MS thesis, University of Nevada, Reno, NV.
17.
Wang
,
X.
, and
Gordaninejad
,
F.
, 2009, “
A New Magnetorheological Fluid-Elastomer Mount: Phenomenological Modeling and Experimental Study
,”
Smart Mater. Struct.
0964-1726,
18
(
9
), p.
095045
.
18.
Rao
,
S. S.
, 2004,
Mechanical Vibration
,
4th ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Kamath
,
G. M.
,
Wereley
,
N. M.
, and
Jolly
,
M.
, 1997, “
Analysis and Testing of a Model-Scale Magnetorheological Fluid Helicopter Lag Mode Damper
,”
American Helicopter Society 53rd Annual Forum
, Virginia Beach, VA, Apr. 29–May 1.
20.
Powell
,
J. A.
, 1994, “
Modeling the Oscillatory Response of an Electrorheological Fluid
,”
Smart Mater. Struct.
0964-1726,
3
, pp.
416
438
.
21.
Li
,
W. H.
, 2000, “
Rheology of MR Fluids and MR Damper Dynamic Response: Experimental and Modeling Approaches
,” Ph.D. thesis, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore.
You do not currently have access to this content.