With the adsorption of analyte on the resonator mass sensor, the system eigenfrequencies will shift due to the changes of inertial mass and structural rigidity. How to model those changes and formulate the eigenfrequency computation is very important to the mass sensor application, which results in different accuracies and requires different amounts of computation. Different methods on the eigenfrequency computation of a beam and a plate carrying arbitrary number of concentrated mass/spring are presented and compared. The advantages and disadvantages of these methods are analyzed and discussed. A new method called finite mode transform method (FMTM) is shown to have good convergence and require much less computation for a beam carrying concentrated mass/spring. Because the previous finite sine transform method (FSTM) has only been applied to compute the eigenfrequency of the plate with four edges simply supported carrying a single concentrated mass, here a generalized FSTM is also presented for the case of the same plate carrying arbitrary number of concentrated mass and spring. When the total number of concentrated mass and spring is small, FMTM and FSTM are demonstrated to be very efficient.

1.
Wenzel
,
W.
, and
White
,
R. M.
, 1989, “
Analytical Comparison of the Sensitivities of Bulk-Wave, Surface-Wave, and Flexural Plate-Wave Ultrasonic Gravimetric Sensors
,”
Appl. Phys. Lett.
0003-6951,
54
, pp.
1976
1978
.
2.
Cunningham
,
B.
,
Weinberg
,
M.
,
Pepper
,
J.
,
Clapp
,
C.
,
Bousquet
,
R.
,
Hugh
,
B.
,
Kant
,
R.
,
Daly
,
C.
, and
Hauser
,
E.
, 2001, “
Design, Fabrication and Vapor Characterization of a Micrcofabricated Flexural Plate Resonator Sensor and Application to Integrated Sensor Arrays
,”
Sens. Actuators B
0925-4005,
73
, pp.
112
123
.
3.
Grate
,
J. W.
,
Wenzel
,
S. W.
, and
White
,
R. M.
, 1991, “
Flexural Plate Wave Devices for Chemical Analysis
,”
Anal. Chem.
0003-2700,
63
, pp.
1552
1561
.
4.
Zellers
,
E. T.
,
Batterman
,
S. A.
,
Han
,
M.
, and
Patrash
,
S. J.
, 1995, “
Optimal Coating Selection for the Analysis of Organic Vapor Mixtures With Polymer-Coated Surface Acoustic Wave Sensor Arrays
,”
Anal. Chem.
0003-2700,
67
, pp.
1092
1106
.
5.
Ramos
,
D.
,
Tamayo
,
J.
,
Mertens
,
J.
,
Calleja
,
M.
, and
Zaballos
,
A.
, 2006, “
Origin of the Response of Nanomechanical Resonators to Bacteria Adsorption
,”
J. Appl. Phys.
0021-8979,
100
, pp.
106105
.
6.
Ilic
,
B.
,
Yang
,
Y.
, and
Craighead
,
H. G.
, 2004, “
Virus Detection Using Nanoelectromechanical Devices
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
2604
2606
.
7.
Verbridge
,
S. S.
,
Parpia
,
J. M.
,
Reichenbach
,
R. B.
,
Bellan
,
L. M.
, and
Craighead
,
H. G.
, 2006, “
High Quality Factor Resonance at Room Temperature With Nanostrings Under High Tensile Stress
,”
J. Appl. Phys.
0021-8979,
99
, p.
124304
.
8.
Ekinci
,
K. L.
, and
Roukes
,
M. L.
, 2005, “
Nanoelectromechanical Systems
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
061101
.
9.
Ilic
,
B.
,
Craighead
,
H. G.
,
Krylov
,
S.
,
Senaratne
,
W.
,
Ober
,
C.
, and
Neuzil
,
P.
, 2004, “
Attogram Detection Using Nanoelectromechanical Oscillators
,”
J. Appl. Phys.
0021-8979,
95
, pp.
3694
3703
.
10.
Wu
,
D. H.
,
Chien
,
W. T.
,
Chen
,
C. S.
, and
Chen
,
H. H.
, 2006, “
Resonant Frequency Analysis of Fixed-Free Single-Walled Carbon Nanotube-Based Mass Sensor
,”
Sens. Actuators, A
0924-4247,
126
, pp.
117
121
.
11.
Dohn
,
S.
,
Sandberg
,
R.
,
Svendsen
,
W.
, and
Boisen
,
A.
, 2005, “
Enhanced Functionality of Cantilever Based Mass Sensors Using Higher Modes
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
233501
.
12.
Jin
,
D.
,
Li
,
X.
,
Liu
,
J.
,
Zuo
,
G.
,
Wang
,
Y.
,
Liu
,
M.
, and
Yu
,
H.
, 2006, “
High-Mode Resonant Piezoresistive Cantilever Sensors for Tens-Femtogram Resoluble Mass Sensing in Air
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1017
1023
.
13.
Ono
,
T.
, and
Esashi
,
M.
, 2005, “
Stress-Induced Mass Detection With a Micromechanical/Nanomechanical Silicon Resonator
,”
Rev. Sci. Instrum.
0034-6748,
76
, pp.
093107
.
14.
Ekinci
,
K. L.
,
Huang
,
X. M. H.
, and
Roukes
,
M. L.
, 2004, “
Ultrasensitive Nanoelectromechanical Mass Detection
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4469
4471
.
15.
Ekinci
,
K. L.
,
Yang
,
Y. T.
, and
Roukes
,
M. L.
, 2004, “
Ultimate Limits to Inertial Mass Sensing Based Upon Nanoelectromechanical Systems
,”
J. Appl. Phys.
0021-8979,
95
, pp.
2682
2689
.
16.
Tseytlin
,
Y. M.
, 2005, “
High Resonant Mass Sensor Evaluation: An Effective Method
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
115101
.
17.
Lavrik
,
N. V.
,
Sepaniak
,
M. J.
, and
Datskos
,
P. G.
, 2004, “
Cantilever Transducers as a Platform for Chemical and Biological Sensors
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
2229
2253
.
18.
Zhang
,
Y.
, and
Zhao
,
Y.
, 2006, “
Numerical and Analytical Study on the Pull-In Instability of Micro-Structure Under Electrostatic Loading
,”
Sens. Actuators, A
0924-4247,
127
, pp.
366
380
.
19.
Timoshenko
,
S. P.
, and
Young
,
D. H.
, 1955,
Vibration Problems in Engineering
,
3rd ed.
,
D. Van Nostrand Company Inc.
,
New York
, Section 1.4.
20.
Low
,
K. H.
, 1997, “
Closed Form Formulation for Fundamental Vibration Frequency of Beams Under Off-Center Load
,”
J. Sound Vib.
0022-460X,
201
, pp.
528
533
.
21.
Chen
,
Y.
, 1963, “
On the Vibration of Beams or Rods Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
0021-8936,
30
, pp.
310
311
.
22.
Low
,
K. H.
, 1998, “
On the Eigenfrequencies for Mass Loaded Beams Under Classical Boundary Conditions
,”
J. Sound Vib.
0022-460X,
215
, pp.
381
389
.
23.
Srinath
,
L. S.
, and
Das
,
Y. C.
, 1967, “
Vibrations of Beams Carrying Mass
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
784
785
.
24.
Baker
,
W. E.
, 1964, “
Vibration Frequencies for Uniform Beams With Central Masses
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
335
337
.
25.
Hess
,
M. S.
, 1964, “
Vibrations Frequencies for a Uniform Beam With Central Mass and Elastic Supports
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
556
558
.
26.
Plaut
,
R. H.
,
Murphy
,
K. D.
, and
Virgin
,
L. N.
, 1995, “
Curve and Surface Veering for a Braced Column
,”
J. Sound Vib.
0022-460X,
187
, pp.
879
885
.
27.
Murphy
,
K. D.
, and
Zhang
,
Y.
, 2000, “
Vibration and Stability of a Cracked Translating Beam
,”
J. Sound Vib.
0022-460X,
237
, pp.
319
335
.
28.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1988, “
Linear Transverse Vibration of Axially Moving String-Particle System
,”
J. Acoust. Soc. Am.
0001-4966,
84
, pp.
963
969
.
29.
Amba-Rao
,
C. L.
, 1964, “
On the Vibration of a Rectangular Plate Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
550
551
.
30.
Wu
,
J. S.
, and
Luo
,
S. S.
, 1997, “
Use of the Analytical-and-Numerical Combined Method in the Free Vibration Analysis of a Rectangular Plate With Any Number of Point Masses and Translational Springs
,”
J. Sound Vib.
0022-460X,
200
, pp.
179
194
.
31.
Chiba
,
M.
, and
Sugimoto
,
T.
, 2003, “
Vibration Characteristics of a Cantilever Plate With Attached Spring-Mass System
,”
J. Sound Vib.
0022-460X,
260
, pp.
237
263
.
32.
Magrab
,
E. B.
, 1968, “
Vibration of a Rectangular Plate Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
411
412
.
33.
Bergman
,
L. A.
,
Hall
,
J. K.
,
Lueschen
,
G. G. G.
, and
McFarland
,
D. M.
, 1993, “
Dynamic Green’s Function for Levy Plates
,”
J. Sound Vib.
0022-460X,
162
, pp.
281
310
.
34.
Li
,
Q. S.
,
Li
,
G. Q.
, and
Liu
,
D. K.
, 2000, “
Exact Solutions for Longitudinal Vibration of Rods Coupled by Translational Springs
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1135
1152
.
35.
Li
,
Q. S.
, 2003, “
An Exact Approach for Free Vibration Analysis of Rectangular Plates With Line-Concentrated Mass and Elastic Line-Support
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
669
685
.
36.
Chang
,
T. C.
, and
Craig
,
R. R.
, Jr.
, 1969, “
Normal Modes of Uniform Beams
,”
J. Eng. Mech.
0733-9399,
195
, pp.
1027
1031
.
37.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vettering
,
W. T.
, 1986,
Numerical Recipes
,
Cambridge University Press
,
Cambridge, UK
.
38.
Senba
,
A.
, and
Furuya
,
H.
, 2008, “
Self-Identification Experiments Using Variable Inertia Systems for Flexible Beam Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
011006
.
39.
Cha
,
P. D.
,
Chan
,
M.
, and
Nielsen
,
G.
, 2008, “
Eigenfrequencies of an Arbitrarily Supported Beam Carrying Multiple In-Span Elastic Rod-Mass Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, pp.
061008
.
40.
Sandberg
,
R.
,
Svendsen
,
W.
,
Mølhave
,
K.
, and
Boisen
,
A.
, 2005, “
Temperature and Pressure Dependence of Resonance in Multi-Layer Microcantilevers
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1454
1458
.
41.
Meirovitch
,
L.
, 1980,
Computational Methods in Structural Dynamics
,
Sijthoff & Noordhoff Inc.
,
Rockville, MD
.
42.
Gorman
,
D. J.
, 1982,
Free Vibration Analysis of Rectangular Plates
,
Elsevier
,
New York
.
You do not currently have access to this content.