The dynamic responses of a pile group embedded in a layered poroelastic half-space subjected to axial harmonic loads is investigated in this study. Based on Biot’s theory, the frequency domain fundamental solution for a vertical circular patch load applied in the layered poroelastic half-space is derived via the transmission and reflection matrix (TRM) method. Utilizing Muki’s method, the second kind of Fredholm integral equations describing the dynamic interaction between the layered half-space and the pile group is constructed. The proposed methodology was validated by comparing the results of this paper with a known result. Numerical results show that in a two-layered half-space, for the closely populated pile group with a rigid cap, the upper softer layer thickness has different influences on the central pile and the corner piles, while for the sparse pile group, it has almost the same influence on all the piles. For a three-layer half-space, the presence of a stiffer middle layer in the layered half-space will enhance the impedance of the pile group significantly, while a softer middle layer will reduce the impedance of the pile group.

1.
Wolf
,
J. P.
, and
Arx
,
G. A. V.
, 1978, “
Impedance Functions of a Group of Vertical Piles
,”
Proceedings of the ASCE Special Conference on Earthquake Engineering and Soil Dynamics
, Pasadena, CA, Vol.
II
, pp.
1024
1041
.
2.
Guo
,
D. J.
,
Tham
,
L. G.
, and
Cheung
,
Y. K.
, 1987, “
Infinite Layer for the Analysis of Single Pile
,”
Comput. Geotech.
0266-3524,
3
, pp.
229
249
.
3.
Pressley
,
J. S.
, and
Poulos
,
H. G.
, 1986, “
Technical Notes on Practical Applications, Finite Element Analysis of Mechanisms of Pile Group Behavior
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
10
, pp.
213
221
.
4.
Sen
,
R.
,
Davies
,
T. G.
, and
Banerjee
,
P. K.
, 1985, “
Dynamic Analysis of Piles and Pile Groups Embedded in Homogeneous Soils
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
13
, pp.
53
65
.
5.
Mamoon
,
S. M.
,
Kaynia
,
A. M.
, and
Banerjee
,
P. K.
, 1990, “
Frequency Domain Dynamic Analysis of Piles and Pile Groups
,”
J. Eng. Mech.
0733-9399,
116
, pp.
2237
2257
.
6.
Gazetas
,
G.
,
Fan
,
K.
, and
Kaynia
,
A.
, 1993, “
Dynamic Response of Pile Groups With Different Configurations
,”
Soil Dyn. Earthquake Eng.
0267-7261,
12
, pp.
239
257
.
7.
Biot
,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, II: Higher Frequency Range
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
179
191
.
8.
Biot
,
M. A.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Psychol.
0021-9010,
33
, pp.
1482
1498
.
9.
Zeng
,
X.
, and
Rajapakse
,
R. K. N. D.
, 1999, “
Dynamic Axial Load Transfer From Elastic Pile to Poroelastic Medium
,”
J. Eng. Mech.
0733-9399,
125
, pp.
1048
1055
.
10.
Cai
,
Y. Q.
,
Chen
,
G.
,
Xu
,
C.
, and
Wu
,
D.
, 2006, “
Torsional Response of Pile Embedded in a Poroelastic Medium
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
1143
1148
.
11.
Wang
,
J. H.
,
Zhou
,
X. L.
, and
Lu
,
J. F.
, 2003, “
Dynamic Response of Pile Groups Embedded in a Poroelastic Medium
,”
Soil Dyn. Earthquake Eng.
0267-7261,
23
, pp.
53
60
.
12.
Maeso
,
O.
,
Aznarez
,
J. J.
, and
Garcia
,
F.
, 2005, “
Dynamic Impedances of Piles and Groups of Piles in Saturated Soils
,”
Comput. Struct.
0045-7949,
83
, pp.
769
782
.
13.
Guo
,
W. D.
, and
Randolph
,
M. F.
, 1997, “
Vertically Loaded Piles in Non-Homogeneous Media
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
21
, pp.
507
532
.
14.
Lee
,
C. Y.
, and
Small
,
J. C.
, 1991, “
Finite-Layer Analysis of Axially Loaded Piles
,”
J. Geotech. Engrg.
0733-9410,
117
, pp.
1706
1722
.
15.
Southcott
,
P. H.
, and
Small
,
J. C.
, 1996, “
Finite Layer Analysis of Vertically Loaded Piles and Pile Groups
,”
Comput. Geotech.
0266-3524,
18
, pp.
47
63
.
16.
Mylonakis
,
G.
, and
Gazetas
,
G.
, 1998, “
Vertical Vibration and Additional Distress of Group Piles in Layer Soil
,”
Soils Found.
0038-0806,
38
, pp.
1
14
.
17.
Senm
,
R.
,
Kausel
,
E.
, and
Banerjee
,
P. K.
, 1985, “
Dynamic Analysis of Piles Groups Embedded in Non-Homogeneous Soil
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
9
, pp.
507
524
.
18.
Kausel
,
E.
, and
Roesset
,
J. M.
, 1981, “
Stiffness Matrices for Layered Soil
,”
Bull. Seismol. Soc. Am.
0037-1106,
71
, pp.
1743
1761
.
19.
Cairo
,
R.
,
Conte
,
E.
, and
Dente
,
G.
, 2005, “
Analysis of Pile Groups Under Vertical Harmonic Vibration
,”
Comput. Geotech.
0266-3524,
32
, pp.
545
554
.
20.
Militano
,
G.
, and
Rajapakse
,
R. K. N. D.
, 1999, “
Dynamic Response of a Pile in a Multi-Layered Soil Transient Torsional and Axial Loading
,”
Geotechnique
0016-8505,
49
, pp.
91
109
.
21.
Harkrider
,
D. G.
, 1964, “
Surface Waves in Multilayered Elastic Medium I: Rayleigh and Love Waves From Buried Sources in a Multilayered Elastic Half-Space
,”
Bull. Seismol. Soc. Am.
0037-1106,
54
, pp.
627
629
.
22.
Haskell
,
N. A.
, 1964, “
Radiation Pattern of Surface Waves From Point Sources in a Multilayered Medium
,”
Bull. Seismol. Soc. Am.
0037-1106,
54
, pp.
377
393
.
23.
Senjuntichai
,
T.
, and
Rajapakse
,
R. K. N. D.
, 1995, “
Exact Stiffness Method for Quasi-Statics of a Multi-Layered Poroelastic Medium
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1535
1553
.
24.
Luco
,
J. E.
, and
Apsel
,
R. J.
, 1983, “
On the Green’s Functions for a Layered Half-Space: Part I
,”
Bull. Seismol. Soc. Am.
0037-1106,
73
, pp.
909
929
.
25.
Apsel
,
R. J.
, and
Luco
,
J. E.
, 1983, “
On the Green’s Functions for a Layered Half-Space: Part II
,”
Bull. Seismol. Soc. Am.
0037-1106,
73
, pp.
931
951
.
26.
Pak
,
R. Y. S.
, and
Guzina
,
B. B.
, 2002, “
Three-Dimensional Green’s Functions for a Multilayered Half-Space in Displacement Potentials
,”
J. Eng. Mech.
0733-9399,
128
, pp.
449
461
.
27.
de Barros
,
F. C. P.
, and
Luco
,
J. E.
, 1994, “
Response of a Layered Viscoelastic Half Space to a Moving Point Load
,”
Wave Motion
0165-2125,
19
, pp.
189
210
.
28.
Chen
,
X. F.
, 1996, “
Seismogram Synthesis for Multi-Layered Media With Irregular Interfaces by Global Generalized Reflection/Transmission Matrices Method 3: Theory of 2D P-SV Case
,”
Bull. Seismol. Soc. Am.
0037-1106,
86
, pp.
389
405
.
29.
Lu
,
J. F.
, and
Hanyga
,
A.
, 2005, “
Fundamental Solution for a Layered Porous Half Space Subject to a Vertical Point Force or a Point Fluid Source
,”
Comput. Mech.
0178-7675,
35
, pp.
376
391
.
30.
Xu
,
B.
,
Lu
,
J. F.
, and
Wang
,
J. H.
, 2008, “
Dynamic Response of a Layered and Water-Saturated Poro-Elastic Half-Space Subjected to a Moving load
,”
Comput. Geotech.
0266-3524,
35
, pp.
1
10
.
31.
Muki
,
R.
, and
Sternberg
,
E.
, 1969, “
On the Diffusion of an Axial Load From an Infinite Cylindrical Pile Embedded in an Elastic Medium
,”
Int. J. Solids Struct.
0020-7683,
5
, pp.
587
605
.
32.
Muki
,
R.
, and
Sternberg
,
E.
, 1970, “
Elastostatic Load Transfer to a Half Space From a Partially Embedded Axially Loaded Rod
,”
Int. J. Solids Struct.
0020-7683,
6
, pp.
69
90
.
33.
Pak
,
R. S. Y.
, and
Jennings
,
P. C.
, 1987, “
Elastodynamic Response of Pile Under Transverse Excitations
,”
J. Eng. Mech.
0733-9399,
113
, pp.
1101
1116
.
34.
Halpern
,
M. R.
, and
Christiano
,
P.
, 1986, “
Steady-State Harmonic Response of a Rigid Plate Bearing on a Liquid-Saturated Poroelastic Half Space
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
14
, pp.
439
454
.
35.
Lu
,
J. F.
, and
Jeng
,
D. S.
, 2008, “
Poro-Elastic Model for Pile-Porous Medium Interaction Due to Seismic Waves
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
32
, pp.
1
41
.
You do not currently have access to this content.