This paper proposes a new iterative approach for the calculation of eigenvalues of single and multiple degree-of-freedom viscoelastic systems. The Biot model of viscoelasticity is assumed. With this model, the viscoelastic forces depend on the past history of motion via convolution integrals over exponentially decaying kernel functions. Current methods to solve this type of problem normally use the state-space approach involving additional internal variables. Such approaches often increase the order of the eigenvalue problem to be solved and can become computationally expensive for large systems. The method proposed in this paper is aimed to address this issue. In total, five iterative algorithms for the real and complex eigenvalues of single and multiple degree-of-freedom systems have been proposed. The results are obtained in terms of explicit closed-form expressions. This enables one to approximately calculate the eigenvalues of complex viscoelastic systems using the eigenvalues of the underlying elastic systems. Representative numerical examples are given to verify the accuracy of the derived expressions.

1.
Biot
,
M. A.
, 1955, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
0031-899X,
97
(
6
), pp.
1463
1469
.
2.
Golla
,
D. F.
, and
Hughes
,
P. C.
, 1985, “
Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
897
906
.
3.
McTavish
,
D. J.
, and
Hughes
,
P. C.
, 1993, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
103
110
.
4.
Lesieutre
,
G. A.
, and
Mingori
,
D. L.
, 1990, “
Finite Element Modeling of Frequency-Dependent Material Properties Using Augmented Thermodynamic Fields
,”
AIAA J.
0001-1452,
13
, pp.
1040
1050
.
5.
Lesieutre
,
G. A.
, and
Bianchini
,
E.
, 1995, “
Time-Domain Modeling of Linear Viscoelasticy Using Anelastic Displacement Fields
,”
ASME J. Vibr. Acoust.
0739-3717,
117
(
4
), pp.
424
430
.
6.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1983, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
0001-1452,
21
(
5
), pp.
741
748
.
7.
Adhikari
,
S.
, and
Wagner
,
N.
, 2003, “
Analysis of Asymmetric Non-Viscously Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
70
(
6
), pp.
885
893
.
8.
Adhikari
,
S.
, and
Wagner
,
N.
, 2004, “
Direct Time-Domain Approach for Exponentially Damped Systems
,”
Comput. Struct.
0045-7949,
82
(
29–30
), pp.
2453
2461
.
9.
Muravyov
,
A.
, and
Hutton
,
S. G.
, 1997, “
Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
684
691
.
10.
Muravyov
,
A.
, 1998, “
Forced Vibration Responses of a Viscoelastic Structure
,”
J. Sound Vib.
0022-460X,
218
(
5
), pp.
892
907
.
11.
Wagner
,
N.
, and
Adhikari
,
S.
, 2003, “
Symmetric State-Space Formulation for a Class of Non-Viscously Damped Systems
,”
AIAA J.
0001-1452,
41
(
5
), pp.
951
956
.
12.
Singh
,
K.
, and
Ram
,
Y.
, 2002, “
Transcendental Eigenvalue Problem and Its Applications
,”
AIAA J.
0001-1452,
40
(
7
), pp.
1402
1407
.
13.
Williams
,
F.
, and
Kennedy
,
D.
, 1988, “
Reliable Use of Determinants to Solve Non-Linear Structural Eigenvalue Problems Efficiently
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
(
8
), pp.
1825
1841
.
14.
Adhikari
,
S.
, 1999, “
Modal Analysis of Linear Asymmetric Non-Conservative Systems
,”
J. Eng. Mech.
0733-9399,
125
(
12
), pp.
1372
1379
.
15.
Adhikari
,
S.
, 2002, “
Dynamics of Non-Viscously Damped Linear Systems
,”
J. Eng. Mech.
0733-9399,
128
(
3
), pp.
328
339
.
16.
Daya
,
E. M.
, and
Potier-Ferry
,
M.
, 2001, “
A Numerical Method for Nonlinear Eigenvalue Problems and Application to Vibrations of Viscoelastic Structures
,”
Comput. Struct.
0045-7949,
79
, pp.
533
541
.
17.
Segalman
,
D. J.
, 1987, “
Calculation of Damping Matrices for Linearly Viscoelastic Structures
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
585
588
.
18.
Friswell
,
M. I.
,
Inman
,
D. J.
, and
Lam
,
M. J.
, 1997, “
On the Realisation of GHM Models in Viscoelasticity
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
11
), pp.
986
993
.
19.
Friswell
,
M. I.
, and
Inman
,
D. J.
, 1999, “
Reduced-Order Models of Structures With Viscoelastic Components
,”
AIAA J.
0001-1452,
37
(
10
), pp.
1318
1325
.
20.
Adhikari
,
S.
, 2010, “
A Reduced Second-Order Approach for Linear Viscoelastic Oscillators
,”
ASME J. Appl. Mech.
0021-8936,
77
(
4
), p.
041003
.
21.
Ruge
,
P.
, 1998, “
Eigenvalues of Damped Structures: Vectoriteration in the Original Space of DOF
,”
Comput. Mech.
0178-7675,
22
(
2
), pp.
167
173
.
22.
Adhikari
,
S.
, and
Pascual
,
B.
, 2009, “
Eigenvalues of Linear Viscoelastic Systems
,”
J. Sound Vib.
0022-460X,
325
(
4–5
), pp.
1000
1011
.
23.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
24.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2003, “
Quantification of Non-Viscous Damping in Discrete Linear Systems
,”
J. Sound Vib.
0022-460X,
260
(
3
), pp.
499
518
.
25.
Adhikari
,
S.
, 2005, “
Qualitative Dynamic Characteristics of a Non-Viscously Damped Oscillator
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
(
2059
), pp.
2269
2288
.
26.
Adhikari
,
S.
, 2008, “
Dynamic Response Characteristics of a Non-Viscously Damped Oscillator
,”
ASME J. Appl. Mech.
0021-8936,
75
(
1
), p.
011003
.
27.
Muller
,
P.
, 2005, “
Are the Eigensolutions of a 1-D.O.F. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
0022-460X,
285
(
1–2
), pp.
501
509
.
28.
Caughey
,
T. K.
, and
O’Kelly
,
M. E. J.
, 1965, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
583
588
.
29.
Shahruz
,
S. M.
, and
Ma
,
F.
, 1988, “
Approximate Decoupling of the Equations of Motion of Linear Underdamped System
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
716
720
.
30.
Shahruz
,
S. M.
, 1990, “
Approximate Decoupling of the Equations of Motion of Damped Linear Systems
,”
J. Sound Vib.
0022-460X,
136
(
1
), pp.
51
64
.
31.
Adhiakri
,
S.
, 2001, “
Classical Normal Modes in Non-Viscously Damped Linear Systems
,”
AIAA J.
0001-1452,
39
(
5
), pp.
978
980
.
32.
Wilkinson
,
J. H.
, 1988,
The Algebraic Eigenvalue Problem
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.