The resonant shunted piezoelectric has been shown a viable solution for stable vibration control. Two main implementations of the single mode shunt circuit have been developed; the original with a series connection of the resistive and inductive element forming the shunt, and the second, a parallel interconnection, which claimed marginal tuning improvements. More recently, multimodal shunting circuits have been developed where a gain in achievable bandwidth may be viewed as offset by the difficulty in properly tuning. In this paper, the original series shunt formulation is presented in unique detail. Here, the electromechanical analogy is developed, along with a unique technique for accurately tuning the shunt circuit. Experimental results are presented to the theoretical foundations.

1.
Hagood
,
N. W.
, and
von Flotow
,
A.
, 1991, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
0022-460X,
146
(
2
), pp.
243
268
.
2.
Den Hartog
,
J. P.
, 1984,
Mechanical Vibrations
,
Dover
,
New York
.
3.
Ren
,
M. Z.
, 2001, “
A Variant Design of the Dynamic Vibration Absorber
,”
J. Sound Vib.
0022-460X,
245
, pp.
762
770
.
4.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
von Flotow
,
A.
, 1990, “
Modelling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
Proceedings of the 31st AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference
, American Institute of Aeronautics and Astronautics, Inc., pp.
2242
2256
, Paper No. AIAA-90-1087-CP.
5.
Park
,
C. H.
,
Kabeya
,
K.
, and
Inman
,
D. J.
, 1998, “
Enhanced Piezoelectric Shunt Design
,”
Proceedings of the 1998 International Mechanical Engineering Congress and Exposition
, ASME, Washington, DC.
6.
Park
,
C. H.
, 2001, “
On the Circuit Model of Piezoceramics
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
, pp.
515
522
.
7.
Clark
,
R. L.
, and
Burke
,
S. E.
, 1996, “
Practical Limitation in Achieving Shaped Modal Sensors With Induced Strain Materials
,”
J. Vibr. Acoust.
0739-3717,
118
(
4
), pp.
668
675
.
8.
Wu
,
S. Y.
, 1996, “
Piezoelectric Shunts With a Parallel R-L Circuit for Structural Damping and Vibration Control
,”
Proc. SPIE
0277-786X,
2720
, pp.
259
269
.
9.
Wu
,
S. Y.
, and
Bicos
,
A. S.
, 1997, “
Structural Vibration Damping Experiments Using Improved Piezoelectric Shunts
,”
Proc. SPIE
0277-786X,
3045
, pp.
40
50
.
10.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
, 1928, “
The Theory of the Dynamic Vibration Absorber
,”
Trans. ASME
0097-6822,
50
(
7
), pp.
9
22
.
11.
Nishihara
,
O.
, and
Asami
,
T.
, 2002, “
Closed-Form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimizations of the Maximum Amplitude Magnification Factors
,”
J. Vibr. Acoust.
0739-3717,
124
, pp.
576
582
.
12.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
, 2002, “
Analytical Solutions to h∞ and h2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
J. Vibr. Acoust.
0739-3717,
124
, pp.
284
295
.
13.
Asami
,
T.
, and
Nishihara
,
O.
, 2002, “
h2 Optimization of the Three-Element Type Dynamic Vibration Absorbers
,”
J. Vibr. Acoust.
0739-3717,
124
, pp.
583
592
.
14.
Cole
,
D. G.
,
Saunders
,
W. R.
, and
Robertshaw
,
H. H.
, 1995, “
Modal Parameter Estimation for Piezostructures
,”
J. Vibr. Acoust.
0739-3717,
117
, pp.
431
438
.
15.
Saunders
,
W. R.
,
Cole
,
D. G.
, and
Robertshaw
,
H. H.
, 1994, “
Experiments in Piezostructure Modal Analysis for MIMO Feedback Control
,”
Smart Mater. Struct.
0964-1726,
3
(
2
), pp.
210
218
.
16.
Vipperman
,
J. S.
, and
Clark
,
R. L.
, 1996, “
Implementation of an Adaptive Piezoelectric Sensoriactuator
,”
AIAA J.
0001-1452,
34
(
10
), pp.
2102
2109
.
17.
Vipperman
,
J. S.
, and
Clark
,
R. L.
, 1999, “
Multivariable Feedback Active Structural Acoustic Control Using Adaptive Piezoelectric Sensoriactuators
,”
J. Acoust. Soc. Am.
0001-4966,
105
(
1
), pp.
219
225
.
18.
Vipperman
,
J. S.
, and
Clark
,
R. L.
, 1999, “
Implications of Using Colocated Strain-Based Transducers for Output Active Structural Acoustic Control
,”
J. Acoust. Soc. Am.
0001-4966,
106
(
3
), pp.
1392
1399
.
19.
Cole
,
D. G.
, and
Clark
,
R. L.
, 1994, “
Adaptive Compensation of Piezoelectric Sensoriactuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
, pp.
665
672
.
20.
Cole
,
D. G.
,
Inman
,
D. J.
, and
Perray
,
N. R.
, 1999, “
Theoretical and Experimental Modal Analysis of Piezostructures
,”
Proceedings of the Sixth International Congress on Sound and Vibration
, Department of Acoustic Technology, Technical University of Denmark.
21.
Ewins
,
D. J.
, 1986,
Modal Testing: Theory and Practice
,
Research Studies Press, Ltd.
,
Letchworth, UK
.
22.
Hollkamp
,
J. J.
, 1994, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Resonant Shunts
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
, pp.
49
57
.
23.
Caruso
,
G.
, 2001, “
A Critical Analysis of Electric Shunt Circuits Employed in Piezoelectric Passive Vibration Damping
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
1059
1068
.
24.
Agnes
,
G. S.
, 1994, “
Active/Passive Piezoelectric Vibration Suppression
,”
Proceedings of the SPIE—Smart Structures and Materials—Passive Damping
, SPIE, pp. 24–34.
25.
Hagood
,
N. W.
, and
Crawley
,
E. F.
, 1991, “
Experimental Investigation of Passive Enhancement of Damping for Space Structures
,”
J. Guid. Control Dyn.
0731-5090,
14
(
6
), pp.
1100
1109
.
26.
Edberg
,
D. L.
,
Bicos
,
A. S.
,
Fuller
,
C. M.
, and
Tracy
,
J. J.
, 1992, “
Theoretical and Experimental Studies of a Truss Incorporating Active Members
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
3
(
2
), pp.
333
347
.
27.
Franco
,
S.
, 2002,
Design With Operational Amplifiers and Analog Integrated Circuits
, 3rd ed.,
McGraw-Hill
,
New York
.
28.
Riordan
,
R. H. S.
, 1967, “
Simulated Inductors Using Differential Amplifiers
,”
Electron. Lett.
0013-5194,
3
(
2
), pp.
50
51
.
You do not currently have access to this content.