Abstract

Nonlinear vibration and dynamic stability analyses of distributed structural systems have often been conducted for their low-dimensional spatially discretized models, and the results obtained from the low-dimensional models may not accurately represent the behaviors of the distributed systems. In this work the incremental harmonic balance method is used to handle a variety of problems pertaining to determining periodic solutions of high-dimensional models of distributed structural systems. The methodology is demonstrated on a translating tensioned beam with a stationary load subsystem and some related systems. With sufficient numbers of included trial functions and harmonic terms, convergent and accurate results are obtained in all the cases. The effect of nonlinearities due to the vibration-dependent friction force between the translating beam and the stationary load subsystem, which results from nonproportionality of the load parameters, decreases as the number of included trial functions increases. A low-dimensional spatially discretized model of the nonlinear distributed system can yield quantitatively and qualitatively inaccurate predictions. The methodology can be applied to other nonlinear and/or time-varying distributed structural systems.

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
2.
Burton
,
T. D.
, 1984, “
A Perturbation Method for Certain Nonlinear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
19
, pp.
397
407
.
3.
Lau
,
S. L.
, and
Cheung
,
Y. K.
, 1981, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
959
964
.
4.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
, 1985, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
958
964
.
5.
Leamy
,
M. J.
, and
Perkins
,
N. C.
, 1998, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
909
916
.
6.
Lau
,
S. L.
, and
Zhang
,
W. S.
, 1992, “
Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
153
160
.
7.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
, 1982, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
849
853
.
8.
Pierre
,
C.
, and
Dowell
,
E. H.
, 1985, “
A Study of Dynamic Instability of Plates by an Extended Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
693
697
.
9.
Pacheco
,
B. N.
,
Fujino
,
Y.
, and
Sulekh
,
A.
, 1993, “
Estimation Curve for Modal Damping in Stay Cables With Viscous Damper
,”
J. Struct. Eng.
0733-9445,
119
, pp.
1961
1979
.
10.
Zhu
,
W. D.
, and
Xu
,
G. Y.
, 2003, “
Vibration of Elevator Cables With Small Bending Stiffness
,”
J. Sound Vib.
0022-460X,
263
, pp.
679
699
.
11.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1988, “
Current Research on the Vibration and Stability of Axially Moving Materials
,”
Shock Vib. Dig.
0583-1024,
20
, pp.
3
13
.
12.
Zhu
,
W. D.
, 2000, “
Vibration and Stability of Time-Dependent Translating Media
,”
Shock Vib. Dig.
0583-1024,
32
(
5
), pp.
369
379
.
13.
Cheng
,
S. P.
, and
Perkins
,
N. C.
, 1991, “
The Vibration and Stability of a Friction-Guided Translating String
,”
J. Sound Vib.
0022-460X,
144
(
2
), pp.
281
292
.
14.
Chen
,
J. S.
, 1997, “
Natural Frequencies and Stability of an Axially-Traveling String in Contact With a Stationary Load System
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
152
157
.
15.
Spelsberg-Korspeter
,
G.
,
Kirillov
,
O. N.
, and
Hagedorn
,
P.
, 2008, “
Modeling and Stability Analysis of an Axially Moving Beam With Frictional Contact
,”
ASME J. Appl. Mech.
0021-8936,
75
, pp.
031001
.
16.
Ames
,
W. F.
,
Lee
,
S. Y.
, and
Zaiser
,
J. N.
, 1968, “
Nonlinear Vibration of a Traveling Threadline
,”
Int. J. Non-Linear Mech.
0020-7462,
3
, pp.
449
469
.
17.
Tabarrok
,
B.
,
Leech
,
C. M.
, and
Kim
,
Y. I.
, 1974, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
0016-0032,
297
(
3
), pp.
201
220
.
18.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
, 1983, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
871
876
.
19.
Brenner
,
S. C.
, and
Scott
,
L. R.
, 1994,
The Mathematical Theory of Finite Element Methods
,
Springer
,
New York
.
20.
Ferri
,
A. A.
, 1986, “
On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
455
456
.
21.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
, 1990, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
0022-460X,
140
(
2
), pp.
273
286
.
22.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden-Day
,
San Francisco, CA
.
23.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1994,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
24.
Miranker
,
W. L.
, 1960, “
The Wave Equation in a Medium in Motion
,”
IBM J. Res. Dev.
0018-8646,
4
(
1
), pp.
36
42
.
You do not currently have access to this content.