Global active control of sound can be achieved inside enclosures under low modal acoustic fields. However, the performance of the system depends largely on the localization of the elements of the control system. For a purely acoustic active control system in which secondary acoustic sources (loudspeakers) and pressure transducers (microphones) as error sensors are used, several optimization strategies have been proposed. These strategies usually rely on partial approximation to the problem, focusing on the study of number and localization of secondary sources without considering error transducers, or selecting the best positions of secondary sources and error transducers of an initial set of candidate locations for these elements. The strategy presented here for tonal global active noise control of steady states comprises two steps; the first is rather common for this sort of problem and its goal is to find the best locations for secondary sources and their strengths by minimizing the potential energy of the enclosure. The second step is the localization of the error transducer, which ensures the results of the first step. It is analytically demonstrated that for a single input single output system, the optimum location of error transducers is at a null pressure point of the optimally attenuated acoustic field. It is also shown that in a real case, the optimum position is that of a minimum of the optimally attenuated acoustic field. Finally, a numerical validation of this principle is carried out in a parallelipedic enclosure.

1.
Nelson
,
P. A.
,
Curtis
,
A. R. D.
,
Elliott
,
S. J.
, and
Bullmore
,
A. J.
, 1987, “
The Active Minimization of Harmonic Enclosed Sound Fields, Part I: Theory
,”
J. Sound Vib.
0022-460X,
117
(
1
), pp.
1
13
.
2.
Snyder
,
S. D.
, and
Hansen
,
C. H.
, 1994, “
The Design of Systems to Control Actively Periodic Sound Transmission Into Enclosed Spaces, Part II: Mechanism and Trends
,”
J. Sound Vib.
0022-460X,
170
(
4
), pp.
451
472
.
3.
Al-Bassyiouni
,
M.
, and
Balachandran
,
B.
, 2006, “
Control of Enclosed Sound Fields Using Zero Spillover Schemes
,”
J. Sound Vib.
0022-460X,
292
, pp.
645
660
.
4.
Bullmore
,
A. J.
,
Nelson
,
P. A.
,
Curtis
,
A. R. D.
, and
Elliott
,
S. J.
, 1987, “
The Active Minimization of Harmonic Enclosed Sound Fields, Part II: A Computer Simulation
,”
J. Sound Vib.
0022-460X,
117
(
1
), pp.
15
33
.
5.
Polacsek
,
C.
, and
Burguburu
,
S.
, 2004, “
Computation of Fan Tone Noise Generation and Radiation from Engine Inlets
,”
Eleventh International Congress on Sound and Vibration
, St. Petersburg, Russia.
6.
Migeot
,
J. L.
, 1993, “
Active Noise Control of a Car Interior
,” SYSNOISE Application Note 26.
7.
Lau
,
S. K.
, and
Tang
,
S. K.
, 2001, “
Sound Fields in a Rectangular Enclosure Under Active Sound Transmission Control
,”
J. Acoust. Soc. Am.
0001-4966,
110
, pp.
925
938
.
8.
Nelson
,
P. A.
, and
Elliot
,
S. J.
, 1999,
Active Control of Sound
,
Academic
,
San Diego
.
9.
Bonnot
,
M.
,
Romeu
,
J.
,
Capdevila
,
R.
, and
Sánchez
,
A.
, 2005, “
Cabin Active Noise Control of Piston Aircraft
,” Tecniacústica, Terrassa, (in Spanish).
10.
Benzaria
,
E.
, and
Martin
,
V.
, 1994, “
Secondary Source Locations in Active Noise Control: Selection or Optimization?
,”
J. Sound Vib.
0022-460X,
173
(
1
), pp.
137
144
.
11.
Elliot
,
S. J.
,
Nelson
,
P. A.
,
Stothers
,
I. M.
, and
Boucher
,
C. C.
, 1990, “
In-Flight Experiments on the Active Control of Propeller-Induced Cabin Noise
,”
J. Sound Vib.
0022-460X,
140
, pp.
219
238
.
12.
Dorling
,
C. M.
,
Eatwell
,
G. P.
,
Hutchins
,
S. M.
,
Ross
,
C. F.
, and
Sutcliffe
,
S. G. C.
, 1989, “
A Demonstration of Active Noise Reduction in an Aircraft Cabin
,”
J. Sound Vib.
0022-460X,
128
, pp.
358
360
.
13.
Baek
,
K. H.
, and
Elliott
,
S. J.
, 2000, “
The Effects of Plant and Disturbance Uncertainties in Active Control Systems on the Placement of Transducers
,”
J. Sound Vib.
0022-460X,
230
(
2
), pp.
261
289
.
14.
Baek
,
K. H.
, and
Elliott
,
S. J.
, 1995, “
Natural Algorithms for Choosing Source Locations in Active Control Systems
,”
J. Sound Vib.
0022-460X,
186
(
2
), pp.
245
267
.
15.
Monaco
,
E.
,
Franco
,
F.
,
Iadevaia
,
M.
, and
Lecce
,
L.
, 2007,
Interior Active Noise Control in Turbofan Aircraft: Numerical Simulation and Experimental Validation for Optimal Actuators Positioning
,
ICA
,
Madrid, Spain
.
16.
Mollo
,
G.
, and
Bernhard
,
R. J.
, 1990, “
Numerical Evaluation of the Performance of Active Noise Control Systems
,”
J. Vibr. Acoust.
0739-3717,
112
, pp.
230
236
.
17.
Bai
,
M.
, and
Chang
,
S.
, 1996, “
Active Noise Control of Enclosed Harmonic Fields by Using BEM-Based Optimization Techniques
,”
Appl. Acoust.
0003-682X,
48
, pp.
15
32
.
18.
Sachau
,
D.
,
Kletschkowski
,
T.
, and
Gerner
,
C.
, 2007, “
Noise Source Identification and Optimized Active Noise Control in Aircraft Cabins
,”
Workshop on Aircraft System Technologies AST
.
19.
Oh
,
S.
,
Kim
,
H.
, and
Park
,
Y.
, 2002, “
Active Control of Road Booming Noise in Automotive Interiors
,”
J. Acoust. Soc. Am.
0001-4966,
111
, pp.
180
188
.
20.
Romeu
,
J.
,
Pàmies
,
T.
,
Jimenez
,
S.
, and
Llibre
,
P.
, 2004,
In Flight Experiments of Local Active Noise Attenuation in Small Aircraft
,
Internoise
,
Prague, Czech Republic
.
21.
Palacios
,
J. I.
,
Alarcón
,
G.
,
Romeu
,
J.
, and
Bonnot
,
M.
, 2006,
Local and Global Active Noise Control in a Propeller-Driven Aircraft
,
Transfac
,
San Sebastian, Spain
.
22.
Simpson
,
M. A.
,
Luong
,
T. M.
,
Fuller
,
C. R.
, and
Jones
,
J. D.
, 1991, “
Full-Scale Demonstration Tests of Cabin Noise Reduction Using Active Vibration Control
,”
J. Aircr.
0021-8669,
28
, pp.
208
215
.
23.
Pan
,
J.
, and
Bao
,
C.
, 1996,
Active Attenuation of Noise Transmission Through Elastic Partitions With High Modal Densities
,
Internoise
,
Liverpool, UK
.
24.
Snyder
,
S. D.
, and
Hansen
,
C. H.
, 1994, “
The Design of Systems to Control Actively Periodic Sound Transmission Into Enclosed Spaces, Part I: Analytical Models
,”
J. Sound Vib.
0022-460X,
170
(
4
), pp.
433
449
.
25.
Pan
,
J.
, and
Hansen
,
C. H.
, 1991, “
Active Control of Noise Transmission Through a Panel Into a Cavity. II: Experimental Study
,”
J. Acoust. Soc. Am.
0001-4966,
90
(
3
), pp.
1488
1492
.
26.
Maillard
,
J. P.
, and
Fuller
,
C. R.
, 1998, “
Comparison of Two Structural Sensing Approaches for Active Structural Acoustic Control
,”
J. Acoust. Soc. Am.
0001-4966,
103
, pp.
396
400
.
27.
Snyder
,
S. D.
, and
Tanaka
,
N.
, 1993, “
On Feedforward Active Control of Sound and Vibration Using Vibration Error Signals
,”
J. Acoust. Soc. Am.
0001-4966,
94
, pp.
2181
2193
.
28.
Maillard
,
J. P.
, and
Fuller
,
C. R.
, 1995, “
Advanced Time Domain Wave-Number Sensing for Structural Acoustic Systems. Part III. Experiments on Active Broadband Radiation Control of a Simply Supported Plate
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
2613
2621
.
29.
Sors
,
T. C.
, and
Elliott
,
S. J.
, 2002, “
Volume Velocity Estimation With Accelerometer Arrays for Active Structural Acoustic Control
,”
J. Sound Vib.
0022-460X,
258
(
5
), pp.
867
883
.
30.
Berry
,
A.
, 2001, “
Advanced Sensing Strategies for the Active Control of Vibration and Structural Radiation
,”
Noise Control Eng. J.
0736-2501,
49
, pp.
54
65
.
31.
Rozema
,
R.
,
Zellers
,
B.
,
Naghshineh
,
K.
, and
Zahui
,
M.
, 2004, “
Development of a PVDF Sensor for the Measurement of the Acoustic Local Volume Displacement of Vibrating Beams
,”
J. Vibr. Acoust.
0739-3717,
126
(
3
), pp.
352
358
.
32.
Clark
,
R. L.
, and
Fuller
,
C. R.
, 1992, “
Modal Sensing of Efficient Acoustic Radiators With Polyvinylidenen Fluoride Distributed Sensors in Active Structural Acoustic Control Approaches
,”
J. Acoust. Soc. Am.
0001-4966,
91
, pp.
3321
3329
.
33.
Grewal
,
A.
,
Qimcik
,
D. G.
, and
Leigh
,
B.
, 2001, “
Feedforward Piezoelectric Structural Control: An Application to Aircraft Cabin Noise Reduction
,”
J. Aircr.
0021-8669,
38
, pp.
164
173
.
34.
Alarcón
,
G.
, 2008, “
Systematic Approach for Active Noise Control of Acoustic Radiation Modes
,” Ph.D. dissertation, LEAM-UPC.
35.
Sommerfeldt
,
S. D.
, and
Nashif
,
P. J.
, 1994, “
An Adaptive Filtered-X Algorithm for Energy-Based Active Control
,”
J. Acoust. Soc. Am.
0001-4966,
96
, pp.
300
306
.
36.
Park
,
Y. C.
, and
Sommerfeldt
,
D.
, 1997, “
Global Attenuation of Broadband Noise Fields Using Energy Density Control
,”
J. Acoust. Soc. Am.
0001-4966,
101
, pp.
350
359
.
37.
Parkins
,
J. W.
,
Sommerfeldt
,
S.
, and
Tichy
,
J.
, 2000, “
Narrowband and Broadband Active Control in an Enclosure Using the Acoustic Energy Density
,”
J. Acoust. Soc. Am.
0001-4966,
108
, pp.
192
203
.
38.
Faber
,
B. M.
, and
Sommerfeldt
,
S. D.
, 2006, “
Global Active Control of Energy Density in a Mock Tractor Cabin
,”
Noise Control Eng. J.
0736-2501,
54
(
3
), pp.
187
193
.
39.
Lipschutz
,
S.
, 2000,
Linear Algebra
,
3rd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.