A study of controlling dynamical systems with uncertain and varying time delays is presented in this paper. The uncertain time delay is assumed to fall in a range with known upper and lower bounds. We apply the supervisory control algorithm to deal with uncertainties in the time delay. An index is defined for each of the predetermined controls for a discrete set of time delays sampled from the range. Based on this index, a hysteretic switching rule selects a control from the predetermined controls with optimal feedback gains. Each predetermined control must be stable for any time delay in the range. Two control design methods are discussed, namely, the mapping method and a higher order approach. Examples of linear systems are used to demonstrate the theoretical work.

1.
Chen
,
W. H.
,
Guan
,
Z. H.
, and
Lu
,
X. M.
, 2004, “
Delay-Dependent Output Feedback Guaranteed Cost Control for Uncertain Time-Delay Systems
,”
Automatica
0005-1098,
40
(
7
), pp.
1263
1268
.
2.
Ji
,
G.
, and
Luo
,
Q.
, 2006, “
Iterative Learning Control for Uncertain Time-Delay Systems
,”
Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal.
,
13
, pp.
1300
1306
. 0002-7820
3.
Kwon
,
O. M.
,
Park
,
J. H.
, and
Lee
,
S. M.
, 2008, “
On Delay-Dependent Robust Stability of Uncertain Neutral Systems With Interval Time-Varying Delays
,”
Appl. Math. Comput.
0096-3003,
203
(
2
), pp.
843
853
.
4.
Yue
,
D.
,
Tian
,
E.
,
Zhang
,
Y.
, and
Peng
,
C.
, 2009, “
Delay-Distribution-Dependent Robust Stability of Uncertain Systems With Time-Varying Delay
,”
Int. J. Robust Nonlinear Control
1049-8923,
19
(
4
), pp.
377
393
.
5.
He
,
Y.
,
Wang
,
Q. G.
,
Lin
,
C.
, and
Wu
,
M.
, 2007, “
Delay-Range-Dependent Stability for Systems With Time-Varying Delay
,”
Automatica
0005-1098,
43
(
2
), pp.
371
376
.
6.
Hu
,
X. B.
, and
Chen
,
W. H.
, 2004, “
Model Predictive Control for Constrained Systems With Uncertain State-Delays
,”
Int. J. Robust Nonlinear Control
1049-8923,
14
(
17
), pp.
1421
1432
.
7.
Jiang
,
X. F.
, and
Han
,
Q. L.
, 2008, “
New Stability Criteria for Linear Systems With Interval Time-Varying Delay
,”
Automatica
0005-1098,
44
(
10
), pp.
2680
2685
.
8.
Kao
,
C. Y.
, and
Rantzer
,
A.
, 2007, “
Stability Analysis of Systems With Uncertain Time-Varying Delays
,”
Automatica
0005-1098,
43
(
6
), pp.
959
970
.
9.
Lin
,
C. L.
,
Chen
,
C. H.
, and
Huang
,
H. C.
, 2008, “
Stabilizing Control of Networks With Uncertain Time Varying Communication Delays
,”
Control Eng. Pract.
0967-0661,
16
(
1
), pp.
56
66
.
10.
Miller
,
D. E.
, and
Davison
,
D. E.
, 2005, “
Stabilization in the Presence of an Uncertain Arbitrarily Large Delay
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
8
), pp.
1074
1089
.
11.
Morse
,
A. S.
, 1996, “
Supervisory Control of Families of Linear Set-Point Controllers—Part 1: Exact Matching
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
10
), pp.
1413
1431
.
12.
Morse
,
A. S.
, 1997, “
Supervisory Control of Families of Linear Set-Point Controllers—Part 2: Robustness
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
11
), pp.
1500
1515
.
13.
Hespanha
,
J. P.
,
Liberzon
,
D.
, and
Morse
,
A. S.
, 1999, “
Logic-Based Switching Control of a Nonholomic System With Parametric Modeling Uncertainty
,”
Syst. Control Lett.
0167-6911,
38
(
3
), pp.
167
177
.
14.
Hespanha
,
J. P.
,
Liberzon
,
D.
, and
Morse
,
A. S.
, 2003, “
Hysteresis-Based Switching Algorithms for Supervisory Control of Uncertain Systems
,”
Automatica
0005-1098,
39
(
2
), pp.
263
272
.
15.
Sheng
,
J.
,
Elbeyli
,
O.
, and
Sun
,
J. Q.
, 2004, “
Stability and Optimal Feedback Controls for Time-Delayed Linear Periodic Systems
,”
AIAA J.
0001-1452,
42
(
5
), pp.
908
911
.
16.
Sheng
,
J.
, and
Sun
,
J. Q.
, 2005, “
Feedback Controls and Optimal Gain Design of Delayed Periodic Linear Systems
,”
J. Vib. Control
1077-5463,
11
(
2
), pp.
277
294
.
17.
Sun
,
J. Q.
, 2009, “
A Method of Continuous Time Approximation of Delayed Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
4
), pp.
998
1007
.
18.
Insperger
,
T.
, and
Stepan
,
G.
, 2001, “
Semi-Discretization of Delayed Dynamical Systems
,”
Proceedings of ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Pittsburgh, PA.
19.
Insperger
,
T.
, and
Stepan
,
G.
, 2002, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
(
5
), pp.
503
518
.
20.
Elbeyli
,
O.
, and
Sun
,
J. Q.
, 2004, “
On the Semi-Discretization Method for Feedback Control Design of Linear Systems With Time Delay
,”
J. Sound Vib.
0022-460X,
273
, pp.
429
440
.
21.
Kwon
,
W.
, and
Pearson
,
A.
, 1980, “
Feedback Stabilization of Linear Systems With Delayed Control
,”
IEEE Trans. Autom. Control
0018-9286,
25
(
2
), pp.
266
269
.
22.
Cai
,
G. -P.
,
Huang
,
J. -Z.
, and
Yang
,
S. X.
, 2003, “
An Optimal Control Method for Linear Systems With Time Delay
,”
Comput. Struct.
0045-7949,
81
, pp.
1539
1546
.
23.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
, 1998,
Digital Control of Dynamic Systems
,
Addison Wesley Longman, Inc.
,
Berkeley, CA
.
You do not currently have access to this content.