The vibrations of thin, elastic, circular disks such as musical cymbals, hard disk drives, and microscale resonators are significantly influenced by the presence of a surrounding fluid. The energy of disk vibrations is known to dissipate into viscous losses and to radiate away as sound. However, the relative importance of these mechanisms is not well understood. In this paper, we present three-dimensional computations of the fluidic impedance of thin, elastic disks vibrating with small amplitudes under ambient conditions. These computations encompass both macroscale and microscale disks, a wide range of operating frequencies, and different fluidic environments. Viscous fluidic impedances are computed using a finite element model, whereas acoustic fluidic impedances are computed using a boundary element method. For a disk with a given clamping ratio vibrating in a specific mode, the nondimensional viscous impedance depends on the unsteady Reynolds number, while the nondimensional acoustic impedance depends on the ratio of structural to acoustic wavelengths. It is shown that viscous losses dominate the fluid damping of disks in data storage and circular saw applications and of conventional disk microresonators. However, for ultrahigh frequency resonators, acoustic radiation must be taken into account to correctly estimate the overall fluid damping. The computed fluidic impedances are expected to be an important aid in the design of a wide range of disk resonators up to the megahertz regime.

1.
Epstein
,
A. H.
, 2004, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
Trans. ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.
2.
Bishop
,
D. J.
,
Giles
,
C. R.
, and
Austin
,
G. P.
, 2002, “
The Lucent LambdaRouter: MEMS Technology of the Future Here Today
,”
IEEE Commun. Mag.
0148-9615,
40
(
3
), pp.
75
79
.
3.
Wang
,
J.
,
Ren
,
Z.
, and
Nguyen
,
C. T. C.
, 2004, “
1.156-GHz Self-Aligned Vibrating Micromechanical Disk Resonator
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
51
(
12
), pp.
1607
1628
.
4.
Onaran
,
A. G.
,
Balantekin
,
M.
,
Lee
,
W.
,
Hughes
,
W. L.
,
Buchine
,
B. A.
,
Guldiken
,
R. O.
,
Parlak
,
Z.
,
Quate
,
C. F.
, and
Degertekin
,
L. F.
, 2006, “
A New Atomic Force Microscope Probe With Force Sensing Integrated Readout and Active Tip
,”
Rev. Sci. Instrum.
0034-6748,
77
, p.
023501
.
5.
Zalalutdinov
,
M.
,
Olkhovets
,
A.
,
Zehnder
,
A.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
, 2001, “
Optically Pumped Parametric Amplification for Micromechanical Oscillators
,”
Appl. Phys. Lett.
0003-6951,
78
(
20
), pp.
3142
3145
.
6.
Zalalutdinov
,
M.
,
Zehnder
,
A.
,
Olkhovets
,
A.
,
Turner
,
S.
,
Sekaric
,
L.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Parpia
,
J. M.
, and
Craighead
,
H. G.
, 2001, “
Autoparametric Optical Drive for Micromechanical Oscillators
,”
Appl. Phys. Lett.
0003-6951,
79
(
5
), pp.
695
697
.
7.
Tuck
,
E. O.
, 1969, “
Calculation of Unsteady Flows Due to Small Motions of Cylinders in a Viscous Fluid
,”
J. Eng. Math.
0022-0833,
3
(
1
), pp.
29
44
.
8.
Green
,
C. P.
, and
Sader
,
J. E.
, 2005, “
Small Amplitude Oscillations of a Thin Beam Immersed in a Viscous Fluid Near a Solid Surface
,”
Phys. Fluids
1070-6631,
17
, p.
073102
.
9.
Clarke
,
R. J.
,
Jensen
,
O. E.
,
Billingham
,
J.
, and
Williams
,
P. M.
, 2006, “
Three-Dimensional Flow Due to a Microcantilever Oscillating Near a Wall: An Unsteady Slender Body Analysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
913
933
.
10.
Blech
,
J. J.
, 1983, “
On Isothermal Squeeze Films
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
615
620
.
11.
Veijola
,
T.
,
Pursula
,
A.
, and
Raback
,
P.
, 2005, “
Extending the Validity of Squeezed-Film Damper Models With Elongations of Surface Dimensions
,”
J. Microelectromech. Syst.
1057-7157,
15
, pp.
1624
1636
.
12.
Tao
,
L.
, and
Thiagarajan
,
K.
, 2003, “
Low KC Flow Regimes for Oscillating Sharp Edges I. Vortex Shedding Observation
,”
Appl. Ocean. Res.
0141-1187,
25
, pp.
21
35
.
13.
Tao
,
L.
, and
Thiagarajan
,
K.
, 2003, “
Low KC Flow Regimes for Oscillating Sharp Edges II. Hydrodynamic Forces
,”
Appl. Ocean. Res.
0141-1187,
25
, pp.
53
62
.
14.
Beslin
,
O.
, and
Nicolas
,
J.
, 1996, “
Modal Radiation From an Unbaffled Rotating Disk
,”
J. Acoust. Soc. Am.
0001-4966,
100
(
5
), pp.
3192
3202
.
15.
Batchelor
,
G. K.
, 2000,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
16.
ADINA R&D Inc.
, 2005, ADINA 8.3 Manuals, www.adina.comwww.adina.com, Watertown, MA 02472.
17.
Soedel
,
W.
, 1993,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
18.
Pierce
,
A. D.
, 1981,
Acoustics: An Introduction to Its Physical Principles and Applications
,
McGraw-Hill
,
New York
.
19.
Jana
,
A.
, and
Raman
,
A.
, 2006, “
Aeroelastic Flutter of a Disk Rotating in an Unbounded Acoustic Medium
,”
J. Sound Vib.
0022-460X,
289
, pp.
612
631
.
You do not currently have access to this content.