In this paper a characteristic force approach is developed that can be used to determine the eigenvalues and mode shapes of any arbitrarily supported linear structure carrying various lumped attachments, including a lumped mass, rotary inertia, grounded translational or torsional spring, grounded translational or torsional viscous damper, and an undamped or damped oscillator with or without a rigid body degree of freedom. Using the proposed approach, each lumped element is first replaced by the load, either a force or moment, that it exerts on the linear structure, thus transforming the free vibration problem into a forced vibration one. By expressing the deflection of the linear structure in terms of these forces or moments and enforcing the compatibility conditions at each attachment points, the roots of the characteristic determinant of these loads can be graphically or numerically solved to find the eigenvalues of the combined system. Once the eigenvalues have been found, the corresponding mode shapes can be readily obtained. The proposed method is easy to code, systematic to apply, and can be easily modified to accommodate any arbitrarily supported one- or two-dimensional linear structure carrying various lumped attachments.

1.
Young
,
D.
, 1948, “
Vibration of a Beam With Concentrated Mass, Spring, and Dashpot
,”
ASME J. Appl. Mech.
0021-8936,
15
(
1
), pp.
65
72
.
2.
Bishop
,
R. E. D.
,
Gladwell
,
G. M. L.
, and
Michaelson
,
S.
, 1965,
The Matrix Analysis of Vibration
,
Cambridge University Press
,
Cambridge
.
3.
Jacquot
,
R. G.
, and
Soedel
,
W.
, 1970, “
Vibration of Elastic Surface Systems Carrying Dynamic Elements
,”
J. Acoust. Soc. Am.
0001-4966,
47
(
5B
), pp.
1354
1358
.
4.
Pomazal
,
R. J.
, and
Snyder
,
V. W.
, 1971, “
Local Modifications of Damped Linear Systems
,”
AIAA Journal
,
9
(
11
), pp.
2216
2221
.
5.
Jacquot
,
R. G.
, and
Gibson
,
J. D.
, 1972, “
The Effect of Discrete Masses and Elastic Supports on Continuous Beam Natural Frequencies
,”
J. Sound Vib.
0022-460X,
23
(
2
), pp.
237
244
.
6.
Dowell
,
E. H.
, 1972, “
Free Vibrations of an Arbitrary Structure in Terms of Component Modes
,”
ASME J. Appl. Mech.
0021-8936,
39
(
3
), pp.
727
732
.
7.
Goel
,
R. P.
, 1976, “
Free Vibrations of a Beam-Mass System With Elastically Restrained Ends
,”
J. Sound Vib.
0022-460X,
47
(
1
), pp.
9
14
.
8.
Dowell
,
E. H.
, 1979, “
On Some General Properties of Combined Dynamical Systems
,”
ASME J. Appl. Mech.
0021-8936,
46
(
1
), pp.
206
209
.
9.
Gürgöze
,
M.
, 1984, “
A Note on the Vibrations of Restrained Beams and Rods With Point Masses
,”
J. Sound Vib.
0022-460X,
96
(
4
), pp.
461
468
.
10.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
, 1986, “
Free Vibration of Combined Dynamical System
,”
J. Eng. Mech.
0733-9399,
112
(
1
), pp.
1
13
.
11.
Ercoli
,
L.
, and
Laura
,
P. A. A.
, 1987, “
Analytical and Experimental Investigation on Continuous Beams Carrying Elastically Mounted Masses
,”
J. Sound Vib.
0022-460X,
114
(
3
), pp.
519
533
.
12.
Wu
,
J. S.
, and
Lin
,
T. L.
, 1990, “
Free Vibration Analysis of a Uniform Cantilever Beam With Point Masses by an Analytical-and-Numerical-Combined Method
,”
J. Sound Vib.
0022-460X,
136
(
2
), pp.
201
213
.
13.
Kukla
,
S.
, and
Posiadała
,
B.
, 1994, “
Free Vibrations of Beams With Elastically Mounted Masses
,”
J. Sound Vib.
0022-460X,
175
(
4
), pp.
557
564
.
14.
Lueschen
,
G. G. G.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
, 1996, “
Green’s Functions for Uniform Timoshenko Beams
,”
J. Sound Vib.
0022-460X,
194
(
1
), pp.
93
102
.
15.
Posiadała
,
B.
, 1997, “
Free Vibrations of Uniform Timoshenko Beams With Attachments
,”
J. Sound Vib.
0022-460X,
204
(
2
), pp.
359
369
.
16.
Kukla
,
S.
, 1997, “
Application of Green Functions in Frequency Analysis of Timoshenko Beams With Oscillators
,”
J. Sound Vib.
0022-460X,
205
(
3
), pp.
355
363
.
17.
Gürgöze
,
M.
, 1998, “
On the Alternative Formulations of the Frequency Equation of a Bernoulli–Euler Beam to Which Several Spring-Mass Systems Are Attached In-Span
,”
J. Sound Vib.
0022-460X,
217
(
3
), pp.
585
595
.
18.
Cha
,
P. D.
, and
Wong
,
W. C.
, 1999, “
A Novel Approach to Determine the Frequency Equations of Combined Dynamical Systems
,”
J. Sound Vib.
0022-460X,
219
(
4
), pp.
689
706
.
19.
Wu
,
J. S.
, and
Chou
,
H. M.
, 1999, “
A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying Any Number of Sprung Masses
,”
J. Sound Vib.
0022-460X,
220
(
3
), pp.
451
468
.
20.
Gürgöze
,
M.
, 1999, “
Alternative Formulations of the Characteristic Equation of a Bernoulli–Euler Beam to Which Several Viscously Damped Spring-Mass Systems are Attached In-Span
,”
J. Sound Vib.
0022-460X,
223
(
4
), pp.
666
677
.
21.
Brennan
,
M. J.
, and
Dayou
,
J.
, 2000, “
Global Control of Vibration Using a Tunable Vibration Neutralizer
,”
J. Sound Vib.
0022-460X,
232
(
3
), pp.
585
600
.
22.
Chang
,
T. P.
,
Chang
,
F. I.
, and
Liu
,
M. F.
, 2001, “
On the Eigenvalues of a Viscously Damped Simple Beam Carrying Point Masses and Springs
,”
J. Sound Vib.
0022-460X,
240
(
4
), pp.
769
778
.
23.
Cha
,
P. D.
, 2002, “
Eigenvalues of a Linear Elastica Carrying Lumped Masses, Springs and Viscous Dampers
,”
J. Sound Vib.
0022-460X,
257
(
4
), pp.
798
808
.
24.
Gardonio
,
P.
, and
Brennan
,
M. J.
, 2004, “
Mobility and Impedance Methods in Structural Dynamics
,”
Advanced Applications in Acoustics, Noise, and Vibration
,
F.
Fahy
and
J.
Walker
, eds.,
Spon Press
,
London
, pp.
389
447
.
25.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
The Macmillan Company
,
New York
.
26.
Gonçalves
,
P. J. P.
,
Brennan
,
M. J.
, and
Elliott
,
S. J.
, 2007, “
Numerical Evaluation of High-Order Modes of Vibration in Uniform Euler–Bernoulli Beams
,”
J. Sound Vib
,
301
(
3–5
), pp.
1035
1039
.
27.
Lau
,
J. H.
, 1984, “
Vibration Frequencies and Mode Shapes for a Constrained Cantilever
,”
ASME J. Appl. Mech.
0021-8936,
51
(
1
), pp.
182
187
.
28.
Lin
,
H. Y.
, and
Tsai
,
Y. C.
, 2007, “
Free Vibration Analysis of a Uniform Multi-Span Beam Carrying Multiple Spring-Mass Systems
,”
J. Sound Vib.
0022-460X,
302
(
3
), pp.
442
456
.
29.
Wu
,
J.
,
Chen
,
D.
, and
Chou
,
H.
, 1999, “
On the Eigenvalues of a Uniform Cantilever Beam Carrying Any Number of Spring-Damper-Mass Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
(
9
), pp.
1277
1295
.
30.
Inceoğlu
,
S.
, and
Gürgöze
,
M.
, 2001, “
Bending Vibrations of Beams Coupled by Several Double Spring-Mass Systems
,”
J. Sound Vib.
0022-460X,
243
(
2
), pp.
370
379
.
31.
Amba-Rao
,
C. L.
, 1964, “
On the Vibration of a Rectangular Plate Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
0021-8936,
31
(
3
), pp.
550
551
.
32.
Avalos
,
D. R.
,
Larrondo
,
H.
, and
Laura
,
P. A. A.
, 1993, “
Vibrations of a Simply Supported Plate Carrying an Elastically Mounted Concentrated Mass
,”
Ocean Eng.
0029-8018,
20
(
2
), pp.
195
205
.
33.
Cha
,
P. D.
, and
Yoder
,
N. C.
, 2007, “
Applying Sherman-Morrison-Woodbury Formulas to Analyze the Free and Forced Responses of a Linear Structure Carrying Lumped Elements
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
3
), pp.
307
316
.
34.
Golub
,
G. H.
, and
van Loan
,
C. F.
, 1996,
Matrix Computations
,
Johns Hopkins University Press
,
Baltimore, MD
.
You do not currently have access to this content.