This paper proposed a practical damage detection method for frame structures based on finite element model-updating techniques. An objective function is defined as minimizing the discrepancies between the experimental and analytical modal parameters (namely, natural frequencies and mode shapes), which is set as a nonlinear least-squares problem with bound constraints. Unlike the commonly used line-search methods, the trust-region approach, a simple yet very powerful concept for minimization, is employed in order to make the optimization process more robust and reliable. Noting the objective function may sometimes be underdetermined for complex structures due to a relatively larger number of potential damaged elements, this paper attempts to propose a simple and convenient solution by expanding the original objective function. Moreover, the relative weighting scheme between different parts in the objective function is also investigated. One numerical two-story portal frame structure and two laboratory-tested frame structures, including a simple three-story steel frame structure and a more complex frame structure with bolted joints, are all adopted to evaluate the efficiency of the proposed technique. Some important issues about the application of the proposed method are also discussed in this paper.

1.
Yan
,
Y. J.
,
Cheng
,
L.
,
Wu
,
Z. Y.
, and
Yam
,
L. H.
, 2007, “
Development in Vibration-Based Structural Damage Detection Technique
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
5
), pp.
2198
2211
.
2.
Chan
,
T. H. T.
,
Yu
,
L.
,
Tam
,
H. Y.
,
Ni
,
Y. Q.
,
Liu
,
S. Y.
,
Chung
,
W. H.
, and
Cheng
,
L. K.
, 2006, “
Fiber Bragg Grating Sensors for Structural Health Monitoring of Tsing Ma Bridge: Background and Experimental Observation
,”
Eng. Struct.
0141-0296,
28
(
5
), pp.
648
659
.
3.
Carden
,
E. P.
, and
Fanning
,
F.
, 2004, “
Vibration Based Condition Monitoring: A Review
,”
Struct. Health Monit.
1475-9217,
3
(
4
), pp.
355
377
.
4.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
, 1995,
Finite Element Model Updating in Structural Dynamics
,
Kluwer Academic
,
Boston
.
5.
Baruch
,
M.
, and
Bar Itzhack
,
I. Y.
, 1978, “
Optimum Weighted Orthogonalization of Measured Modes
,”
AIAA J.
0001-1452,
16
(
4
), pp.
346
351
.
6.
Berman
,
A.
, and
Nagy
,
E. J.
, 1983, “
Improvement of Large Analytical Model Using Test Data
,”
AIAA J.
0001-1452,
21
(
8
), pp.
1168
1173
.
7.
Kabe
,
A. M.
, 1985, “
Stiffness Matrix Adjustment Using Mode Data
,”
AIAA J.
0001-1452,
23
(
9
), pp.
1431
1436
.
8.
Smith
,
S. W.
, and
Beattie
,
C. A.
, 1991, “
Secant-Method Adjustment for Structural Models
,”
AIAA J.
0001-1452,
29
(
1
), pp.
119
126
.
9.
Ricles
,
J. M.
, and
Kosmatka
,
J. B.
, 1992, “
Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity
,”
AIAA J.
0001-1452,
30
, pp.
2310
2316
.
10.
Hemez
,
F. M.
, and
Farhat
,
C.
, 1995, “
Structural Damage Detection Via a Finite Element Model Updating Methodology
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
10
(
3
), pp.
152
166
.
11.
Fritzen
,
C. P.
, and
Jennewein
,
D.
, 1998, “
Damage Detection Based on Model Updating Methods
,”
Mech. Syst. Signal Process.
0888-3270,
12
(
1
), pp.
163
186
.
12.
Lam
,
H. F.
,
Ko
,
J. M.
, and
Wong
,
C. W.
, 1998, “
Localization of Damaged Structural Connections Based on Experimental Modal and Sensitivity Analysis
,”
J. Sound Vib.
0022-460X,
210
(
1
), pp.
91
115
.
13.
Zimmerman
,
D. C.
, 2006, “
Statistical Confidence Using Minimum Rank Perturbation Theory
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
5
), pp.
1155
1172
.
14.
Yin
,
T.
,
Zhu
,
H. P.
, and
Yu
,
L.
, 2007, “
Noise Analysis for Sensitivity-Based Structural Damage Detection
,”
Appl. Math. Mech.
0253-4827,
28
(
6
), pp.
741
750
.
15.
Hao
,
H.
, and
Xia
,
Y.
, 2002, “
Vibration-Based Damage Detection of Structures by Genetic Algorithm
,”
J. Comput. Civ. Eng.
0887-3801,
16
(
3
), pp.
222
229
.
16.
Friswell
,
M. I.
,
Penny
,
J. E. T.
, and
Garvey
,
S. D.
, 1998, “
A Combined Genetic and Eigensensitivity Algorithm for the Location of Damage in Structures
,”
Comput. Struct.
0045-7949,
69
(
5
), pp.
547
556
.
17.
Yu
,
L.
, and
Wan
,
Z. Y.
, 2008, “
An Improved PSO Algorithm and Its Application to Structural Damage Detection
,”
Proceedings of the Fourth International Conference on Natural Computation
, IEEE Computer Society, Washington, D.C., Vol.
1
, pp.
423
427
.
18.
Yu
,
L.
, and
Xu
,
P.
, “
Structural Health Monitoring Based on Continuous ACO Method
,”
Microelectron. Reliab.
0026-2714, in press.
19.
Yu
,
L.
,
Yin
,
T.
,
Zhu
,
H. P.
, and
Xu
,
D. Y.
, 2005, “
An Improved Genetic Algorithm for Structural Damage Detection
,”
Proceedings of the First International Operational Modal Analysis Conference
, Copenhagen, Denmark, pp.
361
368
.
20.
Hajela
,
P.
, and
Soeiro
,
F. J.
, 1990, “
Structural Damage Detection Based on Static and Modal Analysis
,”
AIAA J.
0001-1452,
28
(
6
), pp.
1110
1115
.
21.
Hassiotis
,
S.
, and
Jeong
,
G. D.
, 1995, “
Identification of Stiffness Reduction Using Natural Frequencies
,”
J. Eng. Mech.
0733-9399,
121
(
10
), pp.
1106
1113
.
22.
Morassi
,
A.
, and
Rovere
,
N.
, 1997, “
Localizing a Notch in a Steel Frame From Frequency Measurements
,”
J. Eng. Mech.
0733-9399,
123
(
5
), pp.
422
432
.
23.
Celis
,
M. R.
,
Dennis
,
J. E.
, and
Tapia
,
R. A.
, 1985, “
A Trust Region Strategy for Nonlinear Equality Constrained Optimization
,”
Numerical Optimization
,
SIAM
,
Philadelphia, PA
, Vol.
1984
, pp.
71
82
.
24.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer
,
New York
.
25.
Xu
,
Y. L.
, 2004, “
A Matrix Free Newton/Krylov Method for Coupling Complex Multi-Physics Subsystems
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
26.
Katafygiotis
,
L. S.
, and
Lam
,
H. F.
, 2002, “
Tangential-Projection Algorithm for Manifold Representation in Unidentifiable Model Updating Problems
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
31
(
4
), pp.
791
812
.
27.
Liu
,
T. L.
, and
Chen
,
H. T.
, 2004, “
Real-Time Tracking Using Trust-Region Methods
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
26
(
3
), pp.
397
402
.
28.
Conn
,
N. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
, 2000,
Trust-Region Methods
(
MPS/SIAM Series on Optimization
),
SIAM
,
Philadelphia
.
29.
Branch
,
M. A.
,
Coleman
,
T. F.
, and
Li
,
Y.
, 1999, “
A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
(
1
), pp.
1
23
.
30.
Allemang
,
R. J.
, and
Brown
,
D. L.
, 1982, “
A Correlation Coefficient for Modal Vector Analysis
,”
Proceedings of the First International Modal Analysis Conference
, Orlando, FL, pp.
110
116
.
31.
MATLAB, 2002, Version 6.5 (Release 13), Matlab Optimization Toolbox User’s Guide, Mathworks, http://www.mathworks.com/products/optimizationhttp://www.mathworks.com/products/optimization
32.
Coleman
,
T. F.
, and
Li
,
Y.
, 1996, “
A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables
,”
SIAM J. Optim.
1052-6234,
6
(
4
), pp.
1040
1058
.
33.
Sorensen
,
D. C.
, 1994, “
Minimization of a Large Scale Quadratic Function Subject to an Ellipsoidal Constraint
,” Department of Computational and Applied Mathematics, Rice University, Technical Report No. TR94-27.
34.
Zhu
,
H. P.
, and
Xu
,
Y. L.
, 2005, “
Damage Detection of Mono-Coupled Periodic Structures Based on Sensitivity Analysis of Modal Parameters
,”
J. Sound Vib.
0022-460X,
285
(
1–2
), pp.
365
390
.
35.
Link
,
M.
, 1998, “
Updating Analytical Models by Using Local and Global Parameters and Relaxed Optimization Requirements
,”
Mech. Syst. Signal Process.
0888-3270,
12
(
1
), pp.
7
22
.
36.
Yu
,
L.
,
Link
,
M.
,
Law
,
S. S.
, and
Zhang
,
L. M.
, 1999, “
A Structural Damage Identification Procedure With Application to a Frame Structure With Bolted Joints
,”
Proceedings of the 17th International Modal Analysis Conference
, Kissimmee, FL, pp.
1387
1394
.
You do not currently have access to this content.