This paper reports the application of the space-time conservation element and solution element (CESE) method to the numerical solution of nonlinear waves in elastic solids. The governing equations consist of a pair of coupled first-order nonlinear hyperbolic partial differential equations, formulated in the Eulerian frame. We report their derivations and present conservative, nonconservative, and diagonal forms. The conservative form is solved numerically by the CESE method; the other forms are used to study the eigenstructure of the hyperbolic system (which reveals the underlying wave physics) and deduce the Riemann invariants. The proposed theoretical/numerical approach is demonstrated by directly solving two benchmark elastic wave problems: one involving linear propagating extensional waves, the other involving nonlinear resonant standing waves. For the extensional wave problem, the CESE method accurately captures the sharp propagating wavefront without excessive numerical diffusion or spurious oscillations, and predicts correct reflection characteristics at the boundaries. For the resonant vibrations problem, the CESE method captures the linear-to-nonlinear evolution of the resonant waves and the distribution of wave energy among multiple modes in the nonlinear regime.

1.
Wright
,
T. W.
, 1985, “
Nonlinear Waves in a Rod: Results for Incompressible Elastic Materials
,”
Stud. Appl. Math.
0022-2526,
72
, pp.
149
160
.
2.
Chang
,
S. -C.
, and
To
,
W. -M.
, 1991, “
A New Numerical Framework for Solving Conservation Laws—The Method of Space-Time Conservation Element and Solution Element
,”
NASA
, Report No. TM-104495, pp.
1
113
.
3.
Chang
,
S. -C.
, 1992, “
On an Origin of Numerical Diffusion: Violation of Invariance Under Space-Time Inversion
,”
NASA
, Report No. TM-105776, pp.
1
12
.
4.
Chang
,
S. -C.
, 1995, “
The Method of Space-Time Conservation Element and Solution Element—A New Approach for Solving the Navier–Stokes and the Euler Equations
,”
J. Comput. Phys.
0021-9991,
119
, pp.
295
324
.
5.
Chang
,
S. -C.
, 2006, “
On the Space-Time Inversion Invariance and Its Relation to Non-Dissipatedness of a CESE Core Scheme
,”
Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Sacramento, CA, AIAA Paper No. 2006-4779.
6.
Chang
,
S. -C.
,
Wang
,
X. -Y.
, and
Chow
,
C. -Y.
, 1999, “
The Space-Time Conservation Element and Solution Element Method: A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws
,”
J. Comput. Phys.
0021-9991,
156
, pp.
89
136
.
7.
Chang
,
S. -C.
,
Wang
,
X. -Y.
, and
To
,
W. -M.
, 2000, “
Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Problems
,”
J. Comput. Phys.
0021-9991,
165
, pp.
189
215
.
8.
Chang
,
S. -C.
, 2002, “
Courant Number Insensitive CESE Schemes
,”
Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Indianapolis, IN, AIAA Paper No. 2002-3890.
9.
Chang
,
S. -C.
, and
Wang
,
X. -Y.
, 2003, “
Multi-Dimensional Courant Number Insensitive CESE Euler Solvers for Applications Involving Highly Non-Uniform Meshes
,”
Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Huntsville, AL, AIAA Paper No. 2003-5285.
10.
Chang
,
S. -C.
, 2005, “
Courant Number and Mach Number Insensitive CESE Euler Solvers
,”
Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Tucson, AZ, AIAA Paper No. 2005-4355.
11.
Wang
,
X. -Y.
, and
Chang
,
S. -C.
, 1999, “
A 2D Non-Splitting Unstructured Triangular Mesh Euler Solver Based on the Space-Time Conservation Element and Solution Element Method
,”
Comput. Fluid Dyn. J.
0918-6654,
8
, pp.
309
325
.
12.
Zhang
,
Z. -C.
,
Yu
,
S. -T. J.
, and
Chang
,
S. -C.
, 2002, “
A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Euler Equations by Quadrilateral and Hexahedral Meshes
,”
J. Comput. Phys.
0021-9991,
175
, pp.
168
199
.
13.
Dormy
,
E.
, and
Tarantola
,
A.
, 1995, “
Numerical Simulation of Elastic Wave Propagation Using a Finite Volume Method
,”
J. Geophys. Res.
0148-0227,
100
, pp.
2123
2133
.
14.
LeVeque
,
R. J.
, 2002, “
Finite-Volume Methods for Non-Linear Elasticity in Heterogeneous Media
,”
Int. J. Numer. Methods Fluids
0271-2091,
40
, pp.
93
104
.
15.
Jasak
,
H.
, and
Weller
,
H. G.
, 2000, “
Application of the Finite Volume Method and Unstructured Meshes to Linear Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
267
287
.
16.
Wang
,
B.
,
He
,
H.
, and
Yu
,
S. -T. J.
, 2005, “
Direct Calculation of Wave Implosion of Denotation Initiation
,”
AIAA J.
0001-1452,
43
, pp.
2157
2169
.
17.
Qin
,
J. R.
,
Yu
,
S. -T. J.
, and
Lai
,
M. -C.
, 2001, “
Direct Calculations of Cavitating Flows in Fuel Delivery Pipe by the Space-Time CESE Method
,”
SAE Transactions: Journal of Fuels and Lubricants
,
108
, pp.
1720
1725
.
18.
Kim
,
C. -K.
,
Yu
,
S. -T. J.
, and
Zhang
,
Z.
, 2004, “
Cavity Flow in Scramjet Engine by Space-Time Conservation and Solution Element Method
,”
AIAA J.
0001-1452,
42
, pp.
912
919
.
19.
Im
,
K. -S.
,
Lai
,
M. -C.
,
Yu
,
S. -T. J.
, and
Matheson
,
R. R.
, Jr.
, 2004, “
Simulation of Spray Transfer Processes in Electrostatic Rotary Bell Sprayer
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
449
456
.
20.
Im
,
K. -S.
,
Yu
,
S. -T. J.
,
Lai
,
M. -C.
, and
Meredith
,
W. H.
, 2003, “
Simulation of the Shaping Air Flows and Spray Transport in Electrostatic Rotary Bell Painting Processes
,”
SAE Transactions: Journal of Material Manufacturing
,
110
, pp.
965
975
.
21.
Zhang
,
M.
,
Yu
,
S. -T. J.
,
Lin
,
S. C.
,
Chang
,
S. -C.
, and
Blankson
,
I.
, 2004, “
Solving the MHD Equations by the CESE Method Without Special Treatment for Div B=0
,”
AIAA J.
0001-1452,
42
, pp.
2605
2608
.
22.
Zhang
,
M.
,
Yu
,
S. -T. J.
,
Lin
,
S. C.
,
Chang
,
S. -C.
, and
Blankson
,
I.
, 2006, “
Solving the MHD Equations by the Space-Time Conservation Element and Solution Element Method
,”
J. Comput. Phys.
0021-9991,
214
, pp.
599
617
.
23.
Onorati
,
A.
, 1995, “
Numerical Simulation of Exhaust Flows and Tailpipe Noise of a Small Single-Cylinder Diesel Engine
,”
Proceedings of the International Congress and Exposition
, Detroit, MI, SAE Paper No. 951755.
24.
Payri
,
F.
,
Galindo
,
J.
,
Serrano
,
J. R.
, and
Arnau
,
F. J.
, 2004, “
Analysis of Numerical Methods to Solve One-Dimensional Fluid-Dynamic Governing Equations Under Impulsive Flow in Tapered Ducts
,”
Int. J. Mech. Sci.
0020-7403,
46
, pp.
981
1004
.
25.
Jerez
,
S.
,
Romero
,
J. V.
,
Rosello
,
M. D.
, and
Arnau
,
F. J.
, 2004, “
A Semi-Implicit Space-Time CE-SE Method to Improve Mass Conservation Through Tapered Ducts in Internal Combustion Engines
,”
Math. Comput. Modell.
0895-7177,
40
, pp.
941
951
.
26.
Broatch
,
A.
,
Serrano
,
J. R.
,
Arnau
,
F. J.
, and
Moya
,
D.
, 2007, “
Time-Domain Computation of Muffler Frequency Response: Comparison of Different Numerical Schemes
,”
J. Sound Vib.
0022-460X,
305
, pp.
333
347
.
27.
Torregrosa
,
A. J.
,
Serrano
,
J. R.
,
Arnau
,
F. J.
, and
Romero
,
J. V.
, 2007, “
Experimental Validation of a New Semi-Implicit CE-SE Scheme for the Calculation of Unsteady One-Dimensional Flow in Tapered Ducts
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
1473
1494
.
28.
Bedford
,
A.
, and
Drumheller
,
D. S.
, 1994,
Introduction to Elastic Wave Propagation
,
Wiley
,
New York
.
29.
Drumheller
,
D. S.
, 1998,
Introduction to Wave Propagation in Nonlinear Fluids and Solids
,
Cambridge University Press
,
Cambridge, UK
.
30.
Krashanitsa
,
R.
, and
Shkarayev
,
S.
, 2004, “
Theoretical Study of the Dynamic Response of Bars Composed of Dissimilar Materials
,”
Mater. Sci.
0137-1339,
40
, pp.
795
808
.
31.
Chang
,
S. -C.
,
Himansu
,
A.
,
Loh
,
C. -Y.
,
Wang
,
X. -Y.
,
Yu
,
S. -T. J.
, and
Jorgenson
,
P. C. E.
, 1997, “
Robust and Simple Non-Reflecting Boundary Conditions for the Space-Time Conservation Element and Solution Element Method
,”
Proceedings of the 13th AIAA CFD Conference
, Snowmass, CO, pp.
1172
1205
.
32.
Chang
,
S. -C.
,
Zhang
,
Z. -C.
,
Yu
,
S. -T. J.
, and
Jorgenson
,
P. C. E.
, 2000, “
A Unified Wall Boundary Treatment for Viscous/Inviscid Flows in the CESE Method
,”
Proceedings of the First International Conference of Computational Fluid Dynamics
, Kyoto, Japan, pp.
671
676
.
33.
Chang
,
S. -C.
,
Himansu
,
A.
,
Loh
,
C. -Y.
,
Wang
,
X. -Y.
, and
Yu
,
S. -T. J.
, 2003, “
Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations—A New Approach Based on the Space-Time CESE Method
,”
NASA Glenn Research Center
, Cleveland, OH, Report No. TM-2003-212495/REV1, pp.
1
32
.
You do not currently have access to this content.