The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part’s material properties can vary in real time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high-bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

1.
Park
,
G.
,
Bement
,
M. T.
,
Hartman
,
D. A.
,
Smith
,
R.
, and
Farrar
,
C. R.
, 2007, “
The Use of Active Materials for Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
2189
2206
.
2.
Falter
,
P. J.
, 1990, “
Diamond Turning of Nonrotationally Symmetric Surfaces
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
3.
Dow
,
T. A.
,
Miller
,
M. H.
, and
Falter
,
P. J.
, 1991, “
Application of a Fast Tool Servo for Diamond Turning of Nonrotationally Symmetric Surfaces
,”
Precis. Eng.
0141-6359,
13
(
4
), pp.
243
250
.
4.
Miller
,
M. H.
,
Garrard
,
K. P.
,
Dow
,
T. A.
, and
Taylor
,
L. W.
, 1994, “
A Controller Architecture for Integrating a Fast Tool Servo Into a Diamond Turning Machine
,”
Precis. Eng.
0141-6359,
16
(
1
), pp.
42
48
.
5.
Kim
,
H. S.
, and
Kim
,
E. J.
, 2003, “
Feed-Forward Control of Fast Tool Servo for Real-Time Correction of Spindle Error in Diamond Turning of Flat Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
1177
1183
.
6.
Kim
,
H. S.
,
Kim
,
E. J.
, and
Song
,
B. S.
, 2004, “
Diamond Turning of Large Off-Axis Aspheric Mirrors Using a Fast Tool Servo With On-Machine Measurement
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
349
355
.
7.
Crudele
,
M.
, and
Kurfess
,
T. R.
, 2003, “
Implementation of a Fast Tool Servo With Repetitive Control for Diamond Turning
,”
Mechatronics
0957-4158,
13
, pp.
243
257
.
8.
Zhu
,
W. H.
,
Jun
,
M. B.
, and
Altintas
,
Y.
, 2001, “
A Fast Tool Servo Design for Precision Turning of Shafts on Conventional CNC Lathes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
953
965
.
9.
Woronko
,
A.
,
Huang
,
J.
, and
Altintas
,
Y.
, 2003, “
Piezoelectric Tool Actuator for Precision Machining on Conventional CNC Turning Centers
,”
Precis. Eng.
0141-6359,
27
, pp.
335
345
.
10.
Fung
,
E. H. K.
, and
Yang
,
S. M.
, 2001, “
A New Method for Roundness Control in Taper Turning Using FCC Techniques
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
567
575
.
11.
Pan
,
J. C.
, and
Su
,
C. Y.
, 2001, “
Chatter Suppression With Adaptive Control in Turning Metal via Application of Piezoactuator
,”
Proceedings of the 40th IEEE Conference on Decision and Control
,
Orlando, FL
, pp.
2436
2441
.
12.
Lee
,
E. C.
,
Nian
,
C. Y.
, and
Tarng
,
Y. S.
, 2001, “
Design of a Dynamic Vibration Absorber Against Vibrations in Turning Operation
,”
J. Mater. Process. Technol.
0924-0136,
108
, pp.
278
285
.
13.
Creasy
,
M. A.
,
Leo
,
D. J.
, and
Farinholt
,
K. M.
, 2008, “
Adaptive Positive Position Feedback for Actively Absorbing Energy in Acoustic Cavities
,”
J. Sound Vib.
0022-460X,
311
, pp.
461
472
.
14.
Creasy
,
M. A.
,
Leo
,
D. J.
, and
Farinholt
,
K. M.
, 2008, “
Adaptive Collocated Feedback for Noise Absorption in Payload Fairings
,”
J. Spacecr. Rockets
0022-4650,
45
, pp.
592
599
.
15.
Ku
,
S. S.
,
Larsen
,
G.
, and
Cetinkunt
,
S.
, 1998, “
Fast Tool Servo Control for Ultra-Precision Machining at Extremely Low Feed Rates
,”
Mechatronics
0957-4158,
8
, pp.
381
393
.
16.
Pahk
,
H. J.
,
Lee
,
S. D.
, and
Park
,
J. H.
, 2001, “
Ultra Precision Positioning System for Servo Motor-Piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
51
63
.
17.
Elfizy
,
A. T.
,
Bone
,
G. M.
, and
Elbestawi
,
M. A.
, 2005, “
Design and Control of a Dual-Stage Feed Drive
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
153
165
.
18.
Dosch
,
J. J.
,
Inman
,
D. J.
, and
Garcia
,
E.
, 1992, “
A Self-Sensing Piezoelectric Actuator for Collocated Control
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
3
, pp.
166
185
.
19.
Goh
,
C. J.
, and
Caughey
,
T. K.
, 1985, “
On the Stability Problem Caused by Finite Actuator Dynamics in the Control of Large Space Structures
,”
Int. J. Control
0020-7179,
41
, pp.
787
802
.
20.
Espinoza
,
A. A.
,
Mayer
,
L. J.
,
Oberlin
,
P. V.
, and
Bement
,
M. T.
, 2007, “
Design and Evaluation of a Piezoelectric Actuator for Turning
,”
Proceedings of IMAC-XXV, A Conference & Exposition on Structural Dynamics
,
Orlando, FL
.
21.
Fanson
,
J. L.
, and
Caughey
,
T. K.
, 1990, “
Positive Position Feedback Control for Large Space Structures
,”
AIAA J.
0001-1452,
28
, pp.
717
724
.
22.
Yu
,
S. D.
, and
Shah
,
V.
, 2008, “
Theoretical and Experimental Studies of Chatter in Turning for Uniform and Stepped Workpieces
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
061005
.
23.
McEver
,
M. A.
, and
Leo
,
D. J.
, 2001, “
Autonomous Vibration Suppression Using On-Line Pole-Zero Identification
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
487
495
.
24.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
, 1987, “
Persistent Excitation in Adaptive Systems
,”
Int. J. Control
0020-7179,
45
, pp.
127
160
.
This content is only available via PDF.
You do not currently have access to this content.