Geometrically nonlinear vibrations of circular plate with two cut-outs are simulated by the von Karman equations with respect to displacements. The combination of the Rayleigh–Ritz method and the R-function method, which allows satisfying all boundary conditions, is applied to obtain the vibration modes of the plate. The nonlinear vibrations are expanded using these vibrations modes. The dynamical system with three degrees of freedom is derived by Galerkin method. The influence of cut-outs size on linear and nonlinear vibrations of the plate is analyzed. For different parameters of cut-outs, different internal resonances occur in the plate. The nonlinear vibrations of the system for different internal resonances are analyzed by multiple scale method.

1.
White
,
R. G.
, 1971, “
Effects of Nonlinearity Due to Large Deflections in the Resonance Testing of Structures
,”
J. Sound Vib.
0022-460X,
16
, pp.
255
267
.
2.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden-Days
,
San Francisco
.
3.
Farnsworth
,
C. E.
, and
Evan-Iwanowski
,
R. M.
, 1970, “
Resonance Response of Nonlinear Circular Plates Subjected to Uniform Static Load
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
1043
1049
.
4.
Kung
,
G. C.
, and
Pao
,
Y. -H.
, 1972, “
Nonlinear Flexural Vibrations of a Clamped Circular Plate
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
1050
1054
.
5.
Goloskokow
,
E. G.
, and
Filippow
,
A. P.
, 1971,
Instationare Schwingungen Mechnischer Systeme
,
Akademie
,
Berlin
, in German.
6.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
7.
Karmakar
,
B. M.
, 1978, “
Amplitude-Frequency Characteristics of Non-Linear Vibrations of Clamped Elliptic Plates Carrying a Concentrated Mass
,”
Int. J. Non-Linear Mech.
0020-7462,
13
, pp.
351
359
.
8.
Hignak
,
V. K.
, 1983, “
On One Method of Nonlinear Periodic Vibrations of Circular Plates
,”
Sov. Appl. Mech.
0038-5298,
19
, pp.
80
86
.
9.
Kosmodimanskii
,
O. S.
, and
Tatarinova
,
O. P.
, 1984, “
Nonlinear Vibrations of Circular Plates in the Case of Bending and Expansion-Contradiction
,”
Reports of the National Academy of Sciences of Ukraine
,
11
, pp.
36
39
, in Russian.
10.
Hadian
,
J.
, and
Nayfeh
,
A. H.
, 1990, “
Modal Interaction in Circular Plates
,”
J. Sound Vib.
0022-460X,
142
, pp.
279
292
.
11.
Raman
,
A.
, and
Mote
,
C. D.
, 1999, “
Nonlinear Oscillations of Circular Plate Near a Critical Speed Resonance
,”
Int. J. Non-Linear Mech.
0020-7462,
34
, pp.
139
157
.
12.
Luo
,
A. C. J.
, and
Mote
,
C. D.
, 2000, “
Nonlinear Vibrations of Rotating Thin Disks
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
376
383
.
13.
Chen
,
J. S.
, 2001, “
On the Internal Resonance of the Spinning Disk Under Space-Fixed Pulsating Edge Loads
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
854
859
.
14.
Luo
,
A.
, and
Tan
,
C.
, 2001, “
Resonant and Stationary Waves in Rotating Disks
,”
Nonlinear Dyn.
0924-090X,
24
, pp.
359
372
.
15.
Raman
,
A.
, and
Mote
,
C. D.
, 2001, “
Effects of Imperfections on the Non-Linear Oscillations of Circular Plates Spinning Near Critical Speed
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
261
289
.
16.
Nayfeh
,
A. H.
,
Jilani
,
A.
, and
Manzione
,
P.
, 2001, “
Transverse Vibrations of a Centrally Clamped Rotating Circular Disk
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
163
178
.
17.
Touzé
,
C.
,
Thomas
,
O.
, and
Chaigne
,
A.
, 2002, “
Asymmetric Non-Linear Forced Vibrations of Free-Edge Circular Plate. Part I: Theory
,”
J. Sound Vib.
0022-460X,
258
, pp.
649
676
.
18.
Lee
,
W. K.
,
Yeo
,
M. H.
, and
Samoilenko
,
S. B.
, 2003, “
The Effect of the Number of Nodal Diameters on the Non-Linear Interactions in Two Asymmetric Vibration Modes of a Circular Plate
,”
J. Sound Vib.
0022-460X,
268
, pp.
1013
1023
.
19.
Arafat
,
H. N.
, and
Nayfeh
,
A. H.
, 2004, “
Modal Interaction in the Vibrations of a Heat Annular Plate
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1671
1685
.
20.
Rvachev
,
V. L.
, 1982,
Theory R-Function and Its Application
,
Naukova Dumka
,
Kiev
, in Russian.
21.
Rvachev
,
V. L.
, and
Kurpa
,
L. V.
, 1987,
R-Functions in the Theory of Plates
,
Naukova Dumka
,
Kiev
, in Russian.
22.
Kurpa
,
L.
,
Pilgun
,
G.
, and
Amabili
,
M.
, 2007, “
Nonlinear Vibrations of Shallow Shells With Complex Boundary: R-Functions Methods and Experiments
,”
J. Sound Vib.
0022-460X,
306
, pp.
580
600
.
23.
Amabili
,
M.
, 2008,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
London
.
24.
Grigoluk
,
E. I.
, and
Kabanov
,
V. V.
, 1978,
Stability of Shells
,
Nauka
,
Moscow
, in Russian.
25.
Washizu
,
K.
, 1982,
Variational Methods in Elasticity and Plasticity
,
Pergamon
,
Oxford
.
You do not currently have access to this content.