Thermoelastic damping in contour-mode in-plane vibrations of rings, disks, and elliptical plates is investigated on various size scales, using a reduced finite element formulation. The Fourier scheme is applied to the axisymmetric geometries including circular rings and disks, and is found to be remarkably efficient in searching solutions. The numerical accuracy is further improved by the implementation of quadratic interpolation functions. The computational results are validated by comparing with the commercial software packages as well as the existing analytical solutions in literature. For resonators of elliptical shapes, the dominant frequency has a weak dependence on the geometric aspect ratio γ, whereas the effect of γ on the quality factor (Q value) is much stronger and the peak Q value of the leading mode consistently occurs in the vicinity of γ=1.42.

1.
Evoy
,
S.
,
Olkhovets
,
A.
,
Sekaric
,
L.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
Carr
,
D. W.
, 2000, “
Temperature-Dependent Internal Friction in Silicon Nanoelectromechanical Systems
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
2397
2399
.
2.
Houston
,
B. H.
,
Photiadis
,
D. M.
,
Marcus
,
M. H.
,
Bucaro
,
J. A.
,
Liu
,
X.
, and
Vignola
,
J. F.
, 2002, “
Thermoelastic Loss in Microscale Oscillators
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
1300
1302
.
3.
Zener
,
C.
, 1937, “
Internal Friction in Solids I: Theory of Internal Friction in Reeds
,”
Phys. Rev.
0096-8250,
52
, pp.
230
235
.
4.
Lifshitz
,
R.
, and
Roukes
,
M. L.
, 2000, “
Thermoelastic Damping in Micro- and Nanomechanical Systems
,”
Phys. Rev. B
0163-1829,
61
, pp.
5600
5609
.
5.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
Modeling and Simulations of Thermoelastic Damping in Microplates
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1711
1717
.
6.
Silver
,
M. J.
, and
Peterson
,
L. D.
, 2005, “
Predictive Elastothermodynamic Damping in Finite Element Models by Using a Perturbation Formulation
,”
AIAA J.
0001-1452,
43
, pp.
2646
2653
.
7.
Kumar
,
S.
, and
Haque
,
M. A.
, 2008, “
Reduction of Thermo-Elastic Damping With a Secondary Elastic Field
,”
J. Sound Vib.
0022-460X,
318
, pp.
423
427
.
8.
Wong
,
S. J.
,
Fox
,
C. H. J.
, and
McWilliam
,
S.
, 2006, “
Thermoelastic Damping of the In-Plane Vibration of Thin Silicon Rings
,”
J. Sound Vib.
0022-460X,
293
, pp.
266
285
.
9.
Sun
,
Y. X.
, and
Tohmyoh
,
H.
, 2009, “
Thermoelastic Damping of the Axisymmetric Vibration of Circular Plate Resonators
,”
J. Sound Vib.
0022-460X,
319
, pp.
392
405
.
10.
Hao
,
Z. L.
, 2008, “
Thermoelastic Damping in the Contour-Mode Vibrations of Micro- and Nano-Electromechanical Circular Thin-Plate Resonators
,”
J. Sound Vib.
0022-460X,
313
, pp.
77
96
.
11.
Hao
,
Z.
,
Pourkamali
,
S.
, and
Ayazi
,
F.
, 2004, “
VHF Single-Crystal Silicon Elliptic Bulk-Mode Capacitive Disk Resonators—Part I: Design and Modeling
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
1043
1053
.
12.
Pourkamali
,
S.
,
Hao
,
Z.
, and
Ayazi
,
F.
, 2004, “
VHF Single Crystal Silicon Capacitive Elliptic Bulk-Mode Disk Resonators—Part II: Implementation and Characterization
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
1054
1062
.
13.
Tang
,
H. W.
,
Yi
,
Y. B.
, and
Matin
,
M. A.
, 2008, “
Predictive Modeling of Thermoelastic Energy Dissipation in Tunable MEMS Mirrors
J. Micro/Nanolith. MEMS MOEMS
1932-5150,
7
, p.
023004
.
14.
Yi
,
Y. B.
, 2008, “
Geometric Effects on Thermoelastic Damping in MEMS Resonators
,”
J. Sound Vib.
0022-460X,
309
, pp.
588
599
.
15.
Yi
,
Y. B.
, and
Matin
,
M. A.
, 2007, “
Eigenvalue Solution of Thermoelastic Damping in Beam Resonators Using a Finite Element Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
478
483
.
16.
Yi
,
Y. B.
,
Rahafrooz
,
A.
, and
Pourkamali
,
S.
, 2009, “
Modeling and Testing of the Collective Effects of Thermoelastic and Fluid Damping on Silicon MEMS Resonators
,”
J. Micro/Nanolith. MEMS MOEMS
1932-5150,
8
, p.
023010
.
17.
2006, COMSOL MULTIPHYSICS 3.3 User’s Manual, COMSOL, Inc., Los Angeles, CA.
18.
Yi
,
Y. -B.
,
Barber
,
J. R.
, and
Zagrodzki
,
P.
, 2000, “
Eigenvalue Solution of Thermoelastic Instability Problems Using Fourier Reduction
,”
Proc. R. Soc. London, Ser. A
0950-1207,
456
, pp.
2799
2821
.
19.
Yi
,
Y. B.
, 2006, “
Finite Element Analysis on Thermoelastodynamic Instabilities Involving Frictional Heating
,”
ASME J. Tribol.
0742-4787,
128
, pp.
718
724
.
20.
Reddy
,
J. N.
, 2006,
An Introduction to the Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.