We studied various characteristics of the flow-induced vibration (FIV) of a spring-mounted cylinder, and the fluctuating lift and drag forces exerted on the cylinder due to the periodic changes in the fluid motion and vortex structure. We compared two conditions, which represent the limiting cases for the solid-to-fluid density ratio: the cylinder density is negligible relative to the fluid density, and the fluid density is negligible relative to the cylinder density. For both conditions, we examined the changes in these characteristics over a wide range of nondimensional mass-damping for one degree of freedom (1-DOF, cross-flow) and 2-DOF (cross-flow and in-line) vibration. The four cases exhibit differences (especially at low mass-damping) but also have some similarities in the characteristics of the FIV, induced forces, and energy extraction from the flow. We examined these differences and similarities, the implied errors when the in-line DOF is neglected, and the feasibility of using a single mass-damping parameter to describe the FIV.

1.
Taggart
,
S.
, and
Tognarelli
,
M. A.
, 2008, “
Offshore Drilling Riser VIV Suppression Devices—What’s Available to Operators?
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering
, Estoril, Portugal.
2.
Gabbai
,
R. D.
, and
Benaroya
,
H.
, 2005, “
An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinders
,”
J. Sound Vib.
0022-460X,
282
(
3–5
), pp.
575
616
.
3.
Every
,
M.
, and
King
,
R.
, 1980, “
Drill Pipe Vibration Problem Whipped in Strong English Channel Currents
,”
Oil Gas J.
0030-1388,
June
, pp.
93
96
.
4.
Vikestad
,
K.
,
Vandiver
,
J. K.
, and
Larsen
,
C. M.
, 2000, “
Added Mass and Oscillation Frequency for a Circular Cylinder Subjected to Vortex-Induced Vibrations and External Disturbance
,”
J. Fluids Struct.
0889-9746,
14
, pp.
1071
1088
.
5.
Wanderley
,
J. B.
, and
Levi
,
C.
, 2005, “
Vortex Induced Loads on Marine Risers
,”
Ocean Eng.
0029-8018,
32
, pp.
1281
1295
.
6.
Sumer
,
B. M.
, and
Fredsøe
,
J.
, 2006,
Hydrodynamics Around Cylindrical Structures
,
World Scientific
,
Singapore
.
7.
Jester
,
W.
, and
Kallinderis
,
Y.
, 2004, “
Numerical Study of Incompressible Flow About Transversely Oscillating Cylinder Pairs
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
126
, pp.
310
317
.
8.
Yang
,
J.
,
Preidikman
,
S.
, and
Balaras
,
E.
, 2008, “
A Strongly Coupled, Embedded-Boundary Method for Fluid-Structure Interactions of Elastically Mounted Rigid Bodies
,”
J. Fluids Struct.
0889-9746,
24
(
2
), pp.
167
182
.
9.
Yang
,
B.
,
Gao
,
F.
,
Jeng
,
D. -S.
, and
Wu
,
Y.
, 2009, “
Experimental Study of Vortex-Induced Vibrations of a Cylinder Near a Rigid Plane Boundary in Steady Flow
,”
Acta Mech. Sin.
0459-1879,
25
(
1
), pp.
51
63
.
10.
Fletcher
,
C. A. J.
, 1991,
Computational Techniques for Fluid Dynamics
,
2nd ed.
,
Springer-Verlag
,
Germany
, Vol.
II
.
11.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
, 1993,
Computational Fluid Dynamics for Engineers
,
Engineering Education System
,
Wichita, KS
, Vol.
II
.
12.
Karniadakis
,
G. E.
, and
Triantafyllou
,
G. S.
, 1992, “
Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects
,”
J. Fluid Mech.
0022-1120,
238
, pp.
1
30
.
13.
Bloor
,
M. S.
, 1964, “
The Transition to Turbulence in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
19
, pp.
290
304
.
14.
Rajani
,
B. N.
,
Kandasamy
,
A.
, and
Majumdar
,
S.
, 2009, “
Numerical Simulation of Laminar Flow Past a Circular Cylinder
,”
Appl. Math. Model.
0307-904X,
33
, pp.
1228
1247
.
15.
Blackburn
,
H. M.
, and
Karniadakis
,
G. E.
, 1993, “
Two- and Three-Dimensional Simulations of Vortex-Induced Vibration of a Circular Cylinder
,”
Proceedings of the Third International Offshore and Polar Engineering Conference
, Singapore, Vol.
3
, pp.
715
720
.
16.
Khalak
,
A.
, and
Williamson
,
C. H. K.
, 1999, “
Motions, Forces, and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
0889-9746,
13
(
7–8
), pp.
813
851
.
17.
Skop
,
R. A.
, and
Griffin
,
O. M.
, 1973, “
A Model for the Vortex-Excited Resonant Response of Bluff Cylinders
,”
J. Sound Vib.
0022-460X,
27
(
2
), pp.
225
233
.
18.
Skop
,
R. A.
, and
Griffin
,
O. M.
, 1973, “
An Heuristic Model for Determining Flow-Induced Vibrations of Offshore Structures
,”
Proceedings of the Fifth Offshore Technology Conference
, Houston, TX, Vol.
2
, Paper No. OTC1843.
19.
Griffin
,
O. M.
,
Skop
,
R. A.
, and
Koopmann
,
G. H.
, 1973, “
The Vortex-Excited Resonant Vibrations of Circular Cylinders
,”
J. Sound Vib.
0022-460X,
31
(
2
), pp.
235
249
.
20.
Skop
,
R. A.
, 1974, “
On Modelling Vortex-Excited Oscillations
,” Naval Research Laboratory Memorandum, Report No. 2927.
21.
Skop
,
R. A.
, and
Griffin
,
O. M.
, 1975, “
On a Theory for the Vortex-Excited Oscillations of Flexible Cylindrical Structures
,”
J. Sound Vib.
0022-460X,
41
(
3
), pp.
263
274
.
22.
Griffin
,
O. M.
, and
Koopmann
,
G. H.
, 1977, “
The Vortex-Excited Lift and Reaction Forces on Resonantly Vibrating Cylinders
,”
J. Sound Vib.
0022-460X,
54
(
3
), pp.
435
448
.
23.
Griffin
,
O. M.
, 1980, “
Vortex-Excited Cross-Flow Vibrations of Single Cylindrical Tube
,”
ASME J. Pressure Vessel Technol.
0094-9930,
102
, pp.
158
166
.
24.
Griffin
,
O. M.
, and
Ramberg
,
S. E.
, 1982, “
Some Recent Studies of Vortex Shedding With Application to Marine Tubulars and Risers
,”
ASME J. Energy Resour. Technol.
0195-0738,
104
, pp.
2
13
.
25.
Vickery
,
B. J.
, and
Watkins
,
R. D.
, 1962, “
Flow-Induced Vibration of Cylindrical Structures
,”
Proceedings of the First Australian Conference on Hydraulics and Fluid Mechanics
, Nedlands, Western Australia.
26.
Weaver
,
D. S.
, and
Grover
,
L. K.
, 1978, “
Cross-Flow Induced Vibrations in a Tube Bank—Turbulent Buffeting and Fluid Elastic Instability
,”
J. Sound Vib.
0022-460X,
59
(
2
), pp.
277
294
.
You do not currently have access to this content.