The frequency response characteristic of a general time-invariant system has been extensively analyzed in literature. However, it has not gained sufficient attentions in the parametrically excited system. In fact, due to the parametric excitation, the frequency response of time-periodic system differs distinctly from that of the time-invariant system. Utilizing Sylvester’s theorem and Fourier series expansion method, commonly used in the spectral decomposition for matrix, the frequency response functions (FRFs) of a single-degree-of-freedom (SDOF) parametrically excited system are derived briefly in the paper. The external resonant condition for the system is obtained by analyzing the specific expressions of FRFs. Then, a spur-gear-pair with periodically time-varying mesh stiffness is selected as an example to simulate the frequency response characteristics of parametric system. The effects of parametric stability, periodic mesh stiffness parameters (mesh frequency and contact ratio), and damping are considered in the simulation. It is shown from both theoretical and simulation results that the frequency response of parametric system has the following properties: there are multiple FRFs even for a SDOF periodic system as the forced response contains many frequency components and each FRF is corresponding to a certain response spectrum; the system has multiple external resonances. Besides the resonance caused by the external driving frequency equals to the natural frequency, the system will also be external resonant if external frequency meets the combination of natural frequency and parametric frequency. When the system is in external resonant state, the dominant frequency component in the response is the natural frequency; damping makes the peak values of FRFs drop evidently while it has almost no impact on the FRFs in nonresonant regions.

1.
Ibrahim
,
R. A.
, 1978, “
Parametric Vibration-Part III: Current Problems (1)
,”
Shock Vib. Dig.
,
10
(
3
), pp.
41
57
.
2.
Ibrahim
,
R. A.
, 1978, “
Parametric Vibration-Part III: Current Problems (2)
,”
Shock Vib. Dig.
,
10
(
4
), pp.
19
47
.
3.
Bolotin
,
V. V.
, 1964,
Dynamic Stability of Elastic Systems
,
Holden-Day
,
San Francisco, CA
.
4.
Yakubovitch
,
V. A.
, and
Starzhinskii
,
V. M.
, 1975,
Linear Differential Equations With Periodic Coefficients
, Vols.
1
and 2,
Wiley
,
New York
.
5.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
6.
Hsu
,
C. S.
, 1974, “
On Approximating A General Linear Periodic System
,”
J. Math. Anal. Appl.
0022-247X,
45
(
1
), pp.
234
251
.
7.
Farhang
,
K.
, and
Midha
,
A.
, 1995, “
Steady-State Response of Periodically Time-Varying Linear Systems With Application to an Elastic Mechanism
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
633
639
.
8.
Wu
,
W. -T.
,
Wickert
,
J. A.
, and
Griffin
,
J. H.
, 1995, “
Modal Analysis of the Steady State Response of a Driven Periodic Linear System
,”
J. Sound Vib.
0022-460X,
183
(
2
), pp.
297
308
.
9.
Deltombe
,
R.
,
Moraux
,
D.
,
Plessis
,
G.
, and
Level
,
P.
, 2000, “
Forced Response of Structural Dynamic Systems With Local Time-Dependent Stiffnesses
,”
J. Sound Vib.
0022-460X,
237
(
5
), pp.
761
773
.
10.
Pandey
,
M.
,
Rand
,
R. H.
, and
Zehnder
,
A. T.
, 2008, “
Frequency Locking in a Forced Mathieu-Van Der Pol-Duffing System
,”
Nonlinear Dyn.
0924-090X,
54
, pp.
3
12
.
11.
Irretier
,
H.
, 1999, “
Mathematical Foundations of Experimental Modal Analysis in Rotor
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
2
), pp.
183
191
.
12.
Lee
,
C. W.
, and
Kwon
,
K. S.
, 2001, “
Identification of Rotating Asymmetry in Rotating Machines by Using Reverse Directional Frequency Response Functions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
215
, pp.
1053
1063
.
13.
Prothmann
,
T.
, 2003, “
Estimation of Partial Frequency Response Functions of Periodic Time-Variant Systems Under Broadband Excitation
,”
Proc. Appl. Math. Mech.
1617-7061,
3
, pp.
336
337
.
14.
Joh
,
C. Y.
, and
Lee
,
C. W.
, 1996, “
Use of DFRFs for Diagnosis of Asymmetric/Anisotropic Properties in Rotor-Bearing System
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
64
69
.
15.
Han
,
D. J.
, 2007, “
Vibration Analysis of Periodically Time-Varying Rotor System With Transverse Crack
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
2857
2879
.
16.
Wang
,
J. J.
,
Gao
,
X. B.
, and
Li
,
Q. H.
, 2003, “
Some Characteristics of Nonlinear Response for Single-Degree-of-Freedom of Parametric Vibration System
,”
Chinese Journal of Applied Mechanics
,
20
, pp.
147
151
(in Chinese).
17.
Han
,
Q. K.
,
Wang
,
J. J.
,
Gao
,
X. B.
, and
Li
,
Q. H.
, 2006, “
Characteristics of Frequency-Domain Response for the Parametric Vibration of Spur Gear Pair System
,”
Proceedings of the International Conference on Mechanical Transmission (ICMT)
,
D. T.
Qin
, ed.,
Science
,
Chongqing, China
, pp.
1256
1261
.
18.
Huang
,
D. S.
, and
Tong
,
Z. F.
, 1993, “
Study on Parametric Torsional Behaviour of a Rotor With a Cross Sectional Crack
,”
Journal of China Textile University
,
19
(
5
), pp.
42
47
.
19.
Deolasi
,
P. J.
, and
Datta
,
P. K.
, 1997, “
Experiments on the Parametric Vibration Response of Plates Under Tensile Loading
,”
Exp. Mech.
0014-4851,
37
(
1
), pp.
56
61
.
20.
Insperger
,
T.
,
Stepan
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
, 2003, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
0022-460X,
262
, pp.
333
345
.
21.
Pellicano
,
F.
,
Catellani
,
G.
, and
Fregolent
,
A.
, 2004, “
Parametric Instability of Belts: Theory and Experiments
,”
Comput. Struct.
0045-7949,
82
, pp.
81
91
.
22.
Pipes
,
L. A.
, 1958,
Applied Mathematics for Scientists and Engineers
,
2nd ed.
,
McGraw-Hill
,
New York
.
23.
Barbashin
,
E. A.
, 1970,
Introduction to the Theory of Stability
,
Wolters-Noordhoff
,
Netherlands
.
24.
Richards
,
J. A.
, 1983,
Analysis of Periodically Time-Varying Systems
,
Springer-Verlag
,
New York
.
25.
Johnson
,
W.
, 1980,
Helicopter Theory
,
Princeton University Press
,
New York
.
26.
Han
,
Q. K.
,
Wang
,
J. J.
, and
Li
,
Q. H.
, 2009, “
Theoretical Analysis of the Natural Frequency of a Geared System Under the Influence of a Variable Mesh Stiffness
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
223
(
D2
), pp.
221
231
.
27.
Sinha
,
S. C.
,
Pandiyan
,
R.
, and
Bibb
,
J. S.
, 1996, “
Liapunov–Floquet Transformation: Computation and Applications to Periodic Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
209
219
.
28.
Wang
,
J. J.
,
Li
,
R. F.
, and
Peng
,
X. H.
, 2003, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
Appl. Mech. Rev.
0003-6900,
56
, pp.
309
329
.
29.
Li
,
R. F.
, and
Wang
,
J. J.
, 1997,
Geared System Dynamic: Vibration, Shock and Noise
,
Science
,
Beijing
, in Chinese.
30.
Ozguven
,
H. N.
, and
Houser
,
D. R.
, 1988, “
Mathematical Models Used in Gear Dynamics—A Review
,”
J. Sound Vib.
0022-460X,
121
, pp.
383
411
.
31.
Kahraman
A.
, and
Blankenship
,
G. W.
, 1999, “
Effect of Involute Contact Ratio on Spur Gear Dynamics
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
112
118
.
You do not currently have access to this content.