The vibration suppression of structures using a semi-active mass damper is investigated in this study. A magnetorheological (MR)-damper is utilized to design the semi-actively controlled mass damper. The inverse MR-damper model is developed on the basis of an improved LuGre friction model, and combined with a designed H2/Linear-Quadratic-Gaussian (H2/LQG) controller, in order to control the command current of the MR-damper to suppress structural vibration levels effectively. Illustrated examples are considered to investigate the vibration suppression effectiveness of a semi-active mass damper with a MR-damper, using the developed control methodology. The simulation results were compared with those reported in literature in order to validate the presented methodology.

1.
Frahm
,
H.
, 1911, “
Device for Damping Vibration of Bodies
,” U.S. Patent No. 989-958.
2.
Den Hartog
,
J. P.
, 1956,
Mechanical Vibrations
,
4th ed.
,
McGraw-Hill
,
New York
.
3.
Nishimura
,
I.
,
Kobori
,
T.
,
Sakamoto
,
M.
,
Koshika
,
N.
,
Sasaki
,
K.
, and
Ohrui
,
S.
, 1992, “
Active Tuned Mass Damper
,”
Smart Mater. Struct.
0964-1726,
1
(
4
), pp.
306
311
.
4.
Nishimura
,
I.
,
Yamada
,
T.
,
Sakamoto
,
M.
, and
Kobori
,
T.
, 1998, “
Control Performance of Active-Passive Composite Tuned Mass Damper
,”
Smart Mater. Struct.
0964-1726,
7
(
5
), pp.
637
653
.
5.
Chang
,
C. C.
, and
Yang
,
H. T. Y.
, 1995, “
Control of Buildings Using Active Tuned Mass Dampers
,”
J. Eng. Mech.
0733-9399,
121
(
3
), pp.
355
366
.
6.
Dyke
,
S. J.
, 1996, “
Acceleration Feedback Control Strategies for Active and Semi-Active Control Systems: Modeling, Algorithm Development, and Experimental Verification
,” Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
7.
Zhuang
,
W.
, 1999, “
Optimal Design Analysis of a Semi-Active Tuned Mass Hydraulic Damper for Structural Control
,” MS thesis, University of Oklahoma, Norman, OK.
8.
Kobori
,
T.
,
Takahashi
,
M.
,
Nasu
,
T.
,
Niwa
,
N.
, and
Ogasawara
,
K.
, 1993, “
Seismic Response Controlled Structure With Active Variable Stiffness System
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
22
(
11
), pp.
925
941
.
9.
Hochrainer
,
M. J.
, 2005, “
Tuned Liquid Column Damper for Structural Control
,”
Acta Mech.
0001-5970,
175
, pp.
57
76
.
10.
Bitman
,
L.
,
Choi
,
Y. T.
, and
Wereley
,
N. M.
, 2002, “
Electrorheological Damper Analysis Using an Eyring Constitutive Relationship
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
13
, pp.
633
639
.
11.
Stanway
,
R.
,
Sproston
,
J. L.
, and
Stevens
,
N. G.
, 1987, “
Non-Linear Modeling of an Electro-Rheological Vibration Damper
,”
J. Electrost.
0304-3886,
20
(
2
), pp.
167
184
.
12.
Gamota
,
D. R.
, and
Filisko
,
F. E.
, 1991, “
Dynamic Mechanical Studies of Electrorheological Materials: Moderate Frequencies
,”
J. Rheol.
0148-6055,
35
(
3
), pp.
399
425
.
13.
Wereley
,
N. M.
,
Li
,
P.
, and
Kamath
,
G. M.
, 1998, “
Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
(
8
), pp.
642
649
.
14.
Spencer
,
B. F.
, Jr.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1997, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
0733-9399,
123
(
3
), pp.
230
238
.
15.
Dyke
,
S. J.
,
Spencer
,
B. F.
, Jr.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1996, “
Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction
,”
Smart Mater. Struct.
0964-1726,
5
(
5
), pp.
565
575
.
16.
Choi
,
S. B.
, and
Lee
,
S. K.
, 2001, “
A Hysteresis Model for the Field-Dependent Damping Force of a Magnetorheological Damper
,”
J. Sound Vib.
0022-460X,
245
(
2
), pp.
375
383
.
17.
Dominguez
,
A.
,
Sedaghati
,
R.
, and
Stiharu
,
I.
, 2006, “
A New Dynamic Hysteresis Model for Magnetorheological Dampers
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1179
1189
.
18.
Wang
,
E. R.
,
Ma
,
X. Q.
,
Rakheja
,
S.
, and
Su
,
C. Y.
, 2005, “
Force Tracking Control of Vehicle Vibration With MR-Dampers
,”
Proceedings of the 2005 IEEE International Symposium on Intelligent Control
, Limassol, Cyprus, pp.
995
1000
.
19.
Jimenez
,
R.
, and
Alvarez
,
L.
, 2002, “
Real Time Identification of Structures With Magnetorheological Dampers
,”
Proceedings of the 41st IEEE Conference on Decision and Control
, Vol.
1
, pp.
1017
1022
.
20.
Jiménez
,
R.
, and
Álvarez-Icaza
,
L.
, 2005, “
LuGre Friction Model for a Magnetorheological Damper
,”
Struct. Control Health Monit.
1545-2255,
12
, pp.
91
116
.
21.
Kim
,
H. S.
,
Roschke
,
P. N.
,
Lin
,
P. Y.
, and
Loh
,
C. H.
, 2006, “
Neuro-Fuzzy Model of Hybrid Semi-Active Base Isolation System With FPS Bearing and an MR Damper
,”
Eng. Struct.
0141-0296,
28
(
7
), pp.
947
958
.
23.
http://www.lord.comhttp://www.lord.com, Lord Company, North Carolina, USA.
24.
Rodriguez
,
A.
,
Iwata
,
N.
,
Ikhouane
,
F.
, and
Rodellar
,
J.
, 2009, “
Modeling Identification of a Large-Scale Magnetorheological Fluid Damper
,”
Smart Mater. Struct.
0964-1726,
18
, pp.
015010
.
25.
Yang
,
G.
,
Spencer
,
B. F.
, Jr.
,
Carlson
,
J. D.
, and
Sain
,
M. K.
, 2002, “
Large-Scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations
,”
Eng. Struct.
0141-0296,
24
, pp.
309
323
.
26.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
, 2009, “
Development of LuGre Friction Model for Large-Scale Magneto-Rheological Fluid Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
923
937
.
27.
Leitmann
,
G.
, 1994, “
Semiactive Control for Vibration Attenuation
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
, pp.
841
846
.
28.
McClamroch
,
N. H.
, and
Gavin
,
H. P.
, 1995, “
Closed Loop Structural Control Using Electrorheological Dampers
,”
Proceedings of the American Control Conference
, Seattle, WA, June 21–23, pp.
4173
4177
.
29.
Zhang
,
J.
, and
Roschke
,
P. N.
, 1999, “
Active Control of a Tall Structure Excited by Wind
,”
J. Wind Eng. Ind. Aerodyn.
0167-6105,
83
, pp.
209
223
.
30.
Chang
,
C. C.
, and
Zhou
,
L.
, 2002, “
Neural Network Emulation of Inverse Dynamics for a Magnetorheological Damper
,”
J. Struct. Eng.
0733-9445,
128
(
2
), pp.
231
239
.
31.
Tsang
,
H. H.
,
Su
,
R. K. L.
, and
Chandler
,
A. M.
, 2006, “
Simplified Inverse Dynamics Models for MR Fluid Dampers
,”
Eng. Struct.
0141-0296,
28
, pp.
327
341
.
32.
Battaini
,
M.
,
Casciati
,
F.
, and
Faravelli
,
L.
, 1998, “
Fuzzy Control of Structural Vibration. An Active Mass System Driven by a Fuzzy Controller
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
27
, pp.
1267
1276
.
33.
Schurter
,
K. C.
, and
Roschke
,
P. N.
, 2001, “
Neuro-Fuzzy Control of Structures Using Acceleration Feedback
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
770
779
.
34.
Choi
,
K. M.
,
Cho
,
S. W.
,
Jung
,
H. J.
, and
Lee
,
I. W.
, 2004, “
Semi-Active Fuzzy Control for Seismic Response Reduction Using Magnetorheological Dampers
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
33
, pp.
723
736
.
35.
Liu
,
Y.
,
Gordaninejad
,
F.
,
Evrensel
,
C. A.
,
Hitchcock
,
G.
, and
Wang
,
X.
, 2002, “
Variable Structure System Based Fuzzy Logic Control of Bridge Vibration Using Fail-Safe Magneto-Rheological Fluid Dampers
,”
Proceedings of the SPIE Conference on Smart Materials and Structures
, San Diego, CA.
36.
Yoshioka
,
H.
,
Ramallo
,
J. C.
, and
Spencer
,
B. F.
, Jr.
, 2002, “
“Smart” Base Isolation Strategies Employing Magnetorheological Dampers
,”
J. Eng. Mech.
0733-9399,
128
(
5
), pp.
540
551
.
37.
Yoshida
,
O.
, and
Dyke
,
S. J.
, 2004, “
Seismic Control of a Nonlinear Benchmark Building Using Smart Dampers
,”
J. Eng. Mech.
0733-9399,
130
(
4
), pp.
386
392
.
38.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
, 1989, “
State-Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
8
), pp.
831
847
.
39.
Zhou
,
K.
, and
Khargonekar
,
P. P.
, 1988, “
An Algebraic Riccati Equation Approach to H∞ Optimization
,”
Syst. Control Lett.
0167-6911,
11
(
2
), pp.
85
91
.
40.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Chiang
,
R. Y.
, and
Safonov
,
M. G.
, Robust-control toolbox, The Mathworks.
42.
Spencer
,
B. F.
, Jr.
,
Suhardjo
,
J.
, and
Sain
,
M. K.
, 1994, “
Frequency Domain Optimal Control Strategies for Aseismic Protection
,”
J. Eng. Mech.
0733-9399,
120
(
1
), pp.
135
158
.
You do not currently have access to this content.