The acoustic emission (AE) technology is growing in its applicability to bearing defect diagnosis. Several publications have shown its effectiveness for earlier detection of bearing defects than vibration analysis. In the latter instance, detection and monitoring of defects can be achieved through temporal statistical indicators, which can further be improved by application of denoising techniques. This paper investigates the application of temporal statistical indicators for AE detection of bearing defects on a purposely built test-rig and assesses the effectiveness of various denoising techniques in improving sensitivity to early defect detection. It is concluded that the denoising methods offer significant improvements in identifying defects with AE, especially the self-adaptive noise cancellation method.

1.
Mathews
,
J. R.
, 1983,
Acoustic Emission
,
Gordon and Breach
,
New York
.
2.
Mba
,
D.
, and
Rao
,
R. B. K. N.
, 2006, “
Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps, Gearboxes, Engines, and Rotating Structures
,”
Shock Vib. Dig.
0583-1024,
38
(
1
), pp.
3
16
.
3.
Sikorska
,
J. Z.
, and
Mba
,
D.
, 2008, “
Truth, Lies Acoustic Emission and Process Machines
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
222
(
1
), pp.
1
19
.
4.
Jamaludin
,
N.
, and
Mba
,
D.
, 2001, “
Condition Monitoring of Slow-Speed Rolling Element Bearings Using Stress Waves
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
215
(
4
), pp.
245
271
. 0002-7820
5.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1983, “
Acoustic Emission Transducers for the Vibration Monitoring of Bearings at Low Speeds
,” Cambridge University, Engineering Department, CUED/C-Mech, Technical Report.
6.
Rogers
,
L. M.
, 1979, “
The Application of Vibration Signature Analysis and Acoustic Emission Source Location to On-Line Condition Monitoring of Anti-Friction Bearings
,”
Tribol. Int.
0301-679X,
12
(
2
), pp.
51
58
.
7.
Tandon
,
N.
, and
Nakra
,
B. C.
, 1990, “
The Application of the Sound-Intensity Technique to Defect Detection in Rolling-Element Bearings
,”
Appl. Acoust.
0003-682X,
29
(
3
), pp.
207
217
.
8.
Bansal
,
V.
,
Gupta
,
B. C.
,
Prakash
,
A.
, and
Eshwar
,
V. A.
, 1990, “
Quality Inspection of Rolling Element Bearing Using Acoustic Emission Technique
,”
J. Acoust. Emiss.
0730-0050,
9
(
2
), pp.
142
146
.
9.
Choudhury
,
A.
, and
Tandon
,
N.
, 2000, “
Application of Acoustic Emission Technique for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
0301-679X,
33
, pp.
39
45
.
10.
Al-Ghamdi
,
A. M.
,
Cole
,
P.
,
Such
,
R.
, and
Mba
,
D.
, 2004, “
Estimation of Bearing Defect Size With Acoustic Emission
,”
Insight
1060-135X,
46
(
12
), pp.
758
761
.
11.
Mba
,
D.
, 2008, “
The Use of Acoustic Emission for Estimation of Bearing Defect Size
,”
J. Failure Analysis and Prevention
,
8
(
2
), pp.
188
192
.
12.
Al-Dossary
,
S.
,
Hamzah
,
R. I. R.
, and
Mba
,
D.
, 2009, “
Observations of Changes in Acoustic Emission Waveform for Varying Seeded Defect Sizes in a Rolling Element Bearing
,”
Appl. Acoust.
0003-682X,
70
(
1
), pp.
58
81
.
13.
Ho
,
D.
, and
Randall
,
R. B.
, 2000, “
Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals
,”
Mech. Syst. Signal Process.
0888-3270,
14
(
5
), pp.
763
788
.
14.
Shahina
,
A.
, and
Yegnanarayana
,
B.
, 2005,
Language Identification in Noisy Environments Using Throat Microphone Signals
,
IEEE
,
New York
.
15.
Widrow
,
B.
, and
Glover
,
J.
, 1975, “
Adaptive Noise Cancelling: Principles and Applications
,”
Proc. IEEE
0018-9219,
63
(
12
), pp.
1692
1716
.
16.
Dron
,
J. P.
,
Bolaers
,
F.
, and
Rasolofondraibe
,
L.
, 2004, “
Improvement of the Sensibility of Scalars Indicators Thanks to De-Noising Method by Spectacle Subtraction, Application to the Detection Ball Bearing Defects
,”
J. Sound Vib.
0022-460X,
270
, pp.
61
73
.
17.
Antoni
,
J.
, and
Randall
,
R. B.
, 2001, “
Optimization of SANC for Separating Gear and Bearing Signals
,”
Proceedings of the 14th International Congress
, Vol.
1
, pp.
89
96
.
18.
Boll
,
J. B.
, 1979, “
Suppression of Acoustic Noise in Speech Using Spectral Subtraction
,”
IEEE Trans. Acoust., Speech, Signal Process.
0096-3518,
27
(
2
), pp.
113
120
.
19.
Berouti
,
M.
,
Schwartz
,
R.
, and
Makhoul
,
J.
, 1979, “
Enhancement of Speech Corrupted by Acoustic Noise
,”
Proceedings ICASSP
, pp. 208–211.
20.
Cai
,
L.
, and
Vincent
,
C.
, 1994, “
Débruitage des signaux chocs par soustraction spectrale du bruit
,”
Mec. Ind. Mater.
1244-9091,
47
, pp.
320
332
.
21.
Mallat
,
S.
, 1999,
A Wavelet Tour of Signal Processing
,
Academic Press
,
San Diego, CA
.
22.
Ranta
,
R.
,
Louis-Dorr
V.
, 2003, “
Débruitage par ondelettes et segmentation de signaux non stationnaires
,”
Trait. Signal
0765-0019,
20
(
2
), pp.
119
134
.
23.
Donoho
,
D. L.
, 1993,
Progress in Wavelet Analysis and WVD: A Ten Minute Tour, in Progress in Wavelet Analysis and Applications
,
Y.
Meyer
and
S.
Roques
, eds.,
Atlantica Sequier Frontieres
,
Paris
, pp.
109
128
.
24.
Donoho
,
D. L.
, and
Johnstone
,
I. M.
, 1994, “
Ideal Spatial Adaptation by Wavelet Shrinkage
,”
Biometrika
0006-3444,
81
, pp.
425
455
.
25.
Donoho
,
D. L.
, 1995, “
De-Noising by Soft-Thresholding
,”
IEEE Trans. Inf. Theory
0018-9448,
41
(
3
), pp.
613
627
.
26.
Donoho
,
D. L.
,
Johnstone
,
I. M.
,
Kerkyacharian
,
G.
, and
Picard
,
D.
, 1995, “
Wavelet Shrinkage: Asymptotia
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
57
(
2
), pp.
301
369
.
27.
Birgé
,
L.
, and
Massart
,
P.
, 1997, “
From Model Selection to Adaptive Estimation
,”
Festchrift for L. Le Cam
,
D.
Pollard
, ed.,
Springer
,
New York
, pp.
55
88
.
28.
Misiti
,
M.
,
Misiti
,
Y.
,
Oppenheim
,
G.
, and
Poggi
,
J. M.
, 2007, “
Wavelets and Their Applications
,”
Wiley
,
New York
.
You do not currently have access to this content.