Direct time integration methods are usually applied to determine the dynamic response of systems with local nonlinearities. Nevertheless, these methods are computationally expensive to predict the steady state response. To significantly reduce the computational effort, a new approach is proposed for the multiharmonic response analysis of dynamical systems with local nonlinearities. The approach is based on the describing function (DF) method and linear receptance data. With the DF method, the kinetic equations are converted into a set of complex algebraic equations. By using the linear receptance data, the dimension of the complex algebraic equations, which should be solved iteratively, are only related to nonlinear degrees of freedom (DOFs). A cantilever beam with a local nonlinear element is presented to show the procedure and performance of the proposed approach. The approach can greatly reduce the size and computational cost of the problem. Thus, it can be applicable to large-scale systems with local nonlinearities.

1.
Zheng
,
T. S.
, and
Hasebe
,
N.
, 1999, “
An Efficient Analysis of High-Order Dynamical System With Local Nonlinearity
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
121
(
3
), pp.
408
416
.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillation
,
Wiley
,
New York
.
3.
Gelb
,
A.
, and
Vander Velde
,
W. E.
, 1968,
Multiple-Input Describing Functions and Nonlinear System Design
,
McGraw-Hill
,
New York
.
4.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
, 1982, “
A Variable Parameter Incremental Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
49
(
4
), pp.
871
876
.
5.
Cameron
,
T. M.
, and
Griffin
,
J. H.
, 1989, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
149
154
.
6.
Guillen
,
J.
, and
Pierre
,
C.
, 1998, “
An Efficient, Hybrid, Frequency-Time Domain Method for the Dynamics of Large-Scale Dry-Friction Damped Structural Systems
,”
Proceedings of the IUTAM Symposium on Unilateral Multibody Dynamics
, Munich, Germany.
7.
Tanrikulu
,
Ö.
,
Kuran
,
B.
,
Özgüven
,
H. N.
, and
İmregün
,
M.
, 1993, “
Forced Harmonic Response Analysis of Nonlinear Structures Using Describing Functions
,”
AIAA J.
0001-1452,
31
(
7
), pp.
1313
1320
.
8.
Ciğeroğlu
,
E.
, and
Özgüven
,
H. N.
, 2006, “
Nonlinear Vibration Analysis of Bladed Disks With Dry Friction Dampers
,”
J. Sound Vib.
0022-460X,
295
(
3–5
), pp.
1028
1043
.
9.
Nataraj
,
C.
, and
Nelson
,
H. D.
, 1989, “
Periodic Solutions in Rotor Dynamic System With Nonlinear Supports: A General Approach
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
111
, pp.
187
193
.
10.
Iwatsubo
,
T.
,
Shimbo
,
K.
, and
Kawamura
,
Sh.
, 2003, “
Nonlinear Vibration Analysis of a Rotor System Using Component Mode Synthesis Method
,”
Arch. Appl. Mech.
0939-1533,
117
(
11–12
), pp.
843
855
.
11.
Moon
,
B. Y.
, and
Kang
,
B. S.
, 2003, “
Vibration Analysis of Harmonically Excited Non-Linear System Using the Method of Multiple Scales
,”
J. Sound Vib.
0022-460X,
263
, pp.
1
20
.
12.
Fey
,
R. H. B.
,
van Campen
,
D. H.
, and
de Kraker
,
A.
, 1996, “
Long Term Structural Dynamics of Mechanical Systems With Local Nonlinearities
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
118
(
2
), pp.
147
153
.
13.
van der Vorst
,
E. L. B.
,
Assinck
,
F. H.
,
de Kraker
,
A.
,
Fey
,
R. H. B.
, and
van Campen
,
D. H.
, 1996, “
Experimental Verification of the Steady-State Behavior of a Beam System With Discontinuous Support
,”
Exp. Mech.
0014-4851,
36
(
2
), pp.
159
165
.
14.
Verros
,
G.
, and
Natsiavas
,
S.
, 2002, “
Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
124
(
3
), pp.
427
434
.
15.
Kawamura
,
S.
,
Naito
,
T.
,
Md.Zahid
,
H.
, and
Minamoto
,
H.
, 2008, “
Analysis of Nonlinear Steady State Vibration of a Multi-Degree-of-Freedom System Using Component Mode Synthesis Method
,”
Appl. Acoust.
0003-682X,
69
(
7
), pp.
624
633
.
16.
Kuran
,
B.
, and
Özgüven
,
H. N.
, 1996, “
A Modal Superposition Method for Nonlinear Structures
,”
J. Sound Vib.
0022-460X,
189
(
3
), pp.
315
339
.
17.
Shiau
,
T. N.
, and
Jean
,
A. N.
, 1990, “
Prediction of Periodic Responses of Flexible Mechanical Systems With Nonlinear Characteristics
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
112
(
4
), pp.
501
507
.
18.
Friswell
,
M. I.
,
Penny
,
J. E. T.
, and
Garvey
,
S. D.
, 1995, “
Using Linear Model Reduction to Investigate the Dynamics of Structures With Local Nonlinearities
,”
Mech. Syst. Signal Process.
0888-3270,
9
(
3
), pp.
317
328
.
19.
Friswell
,
M. I.
,
Penny
,
J. E. T.
, and
Garvey
,
S. D.
, 1996, “
The Application of the IRS and Balanced Realization Methods to Obtain Reduced Models of Structures With Local Nonlinearities
,”
J. Sound Vib.
0022-460X,
196
(
4
), pp.
453
468
.
20.
Qu
,
Z. Q.
, 2002, “
Model Reduction for Dynamical Systems With Local Nonlinearities
,”
AIAA J.
0001-1452,
40
(
2
), pp.
327
333
.
You do not currently have access to this content.