In this study, we investigated dispersion curves and the band gap structure of a multiresonator mass-in-mass lattice system. The unit cell of the lattice system consists of three separate masses connected by linear springs. It was demonstrated that the band gaps can be shifted by varying the spring constant and the magnitude of the internal masses. By using the conventional monatomic (single mass) lattice model as an equivalent system, the effective mass was found to become negative for frequencies in the band gaps. An attempt was made to represent the two-resonator mass-in-mass lattice with a microstructure continuum model. It was found that the microstructure continuum model can capture the dispersive behavior and band gap structure of the original two-resonator mass-in-mass system.

1.
Veselago
,
V. G.
, 1968, “
The Electrodynamics of Substances With Simultaneously Negative Values of ε and μ
,”
Sov. Phys. Usp.
0038-5670,
10
, pp.
509
514
.
2.
Smith
,
D. R.
,
Pendry
,
J. B.
, and
Wiltshire
,
M. C. K.
, 2004, “
Metamaterials and Negative Refractive Index
,”
Science
0036-8075,
305
, pp.
788
792
.
3.
Pendry
,
J. B.
,
Holden
,
A. J.
,
Robbins
,
D. J.
, and
Stewart
,
W. J.
, 1999, “
Magnetism From Conductors and Enhanced Nonlinear Phenomena
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
47
, pp.
2075
2084
.
4.
Cummer
,
S. A.
, and
Schurig
,
D.
, 2007, “
One Path to Acoustic Cloaking
,”
New J. Phys.
1367-2630,
9
, pp.
45
52
.
5.
Vukusic
,
P.
, and
Sambles
,
J. R.
, 2003, “
Photonic Structures in Biology
,”
Nature (London)
0028-0836,
424
, pp.
852
855
.
6.
Linden
,
S.
,
Enkrich
,
C.
,
Wegener
,
M.
,
Zhou
,
J.
,
Koschny
,
T.
, and
Soukoulis
,
C. M.
, 2004, “
Magnetic Response of Metamaterials at 100 Terahertz
,”
Science
0036-8075,
306
, pp.
1351
1353
.
7.
Smirnova
,
E. I.
,
Mastovsky
,
I.
,
Shapiro
,
M. A.
,
Temkin
,
R. J.
,
Earley
,
L. M.
, and
Edwards
,
R. L.
, 2005, “
Fabrication and Cold Test of Photonic Band Gap Resonators and Accelerator Structures
,”
Phys. Rev. ST Accel. Beams
1098-4402,
8
, p.
091302
.
8.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2005, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
0163-1829,
71
, p.
014103
.
9.
Mei
,
J.
,
Liu
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
, 2006, “
Effective Mass Density of Fluid-Solid Composites
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
024301
.
10.
Wu
,
Y.
,
Lai
,
Y.
, and
Zhang
,
Z.
, 2007, “
Effective Medium Theory for Elastic Metamaterials in Two Dimensions
,”
Phys. Rev. B
0163-1829,
76
, p.
205313
.
11.
Sigalas
,
M. M.
, and
Economou
,
E. N.
, 1992, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
0022-460X,
158
, pp.
377
382
.
12.
Poulton
,
C. G.
,
Movchan
,
A. B.
,
McPhedran
,
R. C.
,
Nicorovici
,
N. A.
, and
Antipov
,
Y. A.
, 2000, “
Eigenvalue Problems for Doubly Periodic Elastic Structures and Phononic Band Gaps
,”
Proc. R. Soc. London, Ser. A
0950-1207,
456
, pp.
2543
2559
.
13.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
, 1993, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
0031-9007,
71
, pp.
2022
2025
.
14.
Martinsson
,
P. G.
, and
Movchan
,
A. B.
, 2003, “
Vibration of Lattice Structures and Phononic Band Gaps
,”
Q. J. Mech. Appl. Math.
0033-5614,
56
, pp.
45
64
.
15.
Sigalas
,
M. M.
, 1998, “
Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders
,”
J. Appl. Phys.
0021-8979,
84
, pp.
3026
3030
.
16.
Yang
,
S. X.
,
Page
,
J. H.
,
Liu
,
Z. Y.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2004, “
Focusing of Sound in a 3D Phononic Crystal
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
024301
.
17.
Hu
,
X. H.
,
Chan
,
C. T.
, and
Zi
,
J.
, 2005, “
Two-Dimensional Sonic Crystals With Helmholtz Resonators
,”
Phys. Rev. E
1063-651X,
71
, p.
055601
.
18.
Fang
,
N.
,
Xi
,
D. J.
,
Xu
,
J. Y.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
, 2006, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nature Mater.
1476-1122,
5
, pp.
452
456
.
19.
Zhang
,
X.
, and
Liu
,
Z.
, 2004, “
Negative Refraction of Acoustic Waves in Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
341
343
.
20.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2000, “
Locally Resonant Sonic Materials
,”
Science
0036-8075,
289
, pp.
1734
1736
.
21.
Li
,
J.
, and
Chan
,
C. T.
, 2004, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
1063-651X,
70
, p.
055602
.
22.
Milton
,
G. W.
, and
Willis
,
J. R.
, 2007, “
On Modifications of Newton’s Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. London, Ser. A
0950-1207,
463
, pp.
855
880
.
23.
Yao
,
S. S.
,
Zhou
,
X. M.
, and
Hu
,
G. K.
, 2008, “
Experimental Study on Negative Effective Mass in a 1D Mass-Spring System
,”
New J. Phys.
1367-2630,
10
, p.
043020
.
24.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
, 2009, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
0020-7225,
47
, pp.
610
617
.
25.
Vincent
,
J. H.
, 1898, “
On the Construction of a Mechanical Model to Illustrate Helmholtz's Theory of Dispersion
,”
Philos. Mag.
1478-6435,
46
, pp.
557
563
.
26.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
, 2007, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
1186
1193
.
27.
Sun
,
C. T.
, and
Huang
,
G. L.
, 2007, “
Modeling Heterogeneous Media With Microstructures of Different Scales
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
203
209
.
28.
Huang
,
G. L.
, and
Sun
,
C. T.
, 2007, “
Continuum Modeling of Solids With Micro/Nanostructures
,”
Philos. Mag.
1478-6435,
87
, pp.
3689
3707
.
You do not currently have access to this content.