The basic operation of smart material-based hybrid electrohydraulic actuators involves high frequency bidirectional length change in an active material stack (or rod) that is converted to unidirectional motion of a hydraulic fluid by a set of valves. In this study, we present the design and measured performance of a compact hybrid actuation system driven by the single-crystal electrostrictive material PMN-32%PT. The active material was actuated at different frequencies with variations in the applied voltage, fluid bias pressure, and external load to study the effects on output velocity. The maximum actuator velocity was 330 mm/s and the corresponding flow rate was 42.5 cc/s; the blocked force of the actuator was 63 N. The results of the experiments are presented and compared with simulation data to validate a nonlinear time-domain model. Linearized equations were used to represent the active material while the inertia, viscous losses, and compressibility of the fluid were included using differential equations. Factors affecting system performance are identified and the inclusion of fluid inertia in the model is also justified.

1.
Konishi
,
K.
,
Yoshimura
,
T.
,
Hashimoto
,
K.
, and
Yamamoto
,
N.
, 1993, “
Hydraulic Actuators Driven by Piezoelectric Elements (1st Report, Trial Piezoelectric Pump and Its Maximum Power)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
59
(
564
), pp.
2477
2484
.
2.
Gerver
,
M. J.
,
Goldie
,
J. H.
,
Swenbeck
,
J. R.
,
Shea
,
R.
,
Jones
,
P.
,
Ilmonen
,
R. T.
,
Dozor
,
D. M.
,
Armstrong
,
S.
,
Roderick
,
R.
,
Nimblett
,
F. E.
, and
Iovanni
,
R.
, 1998, “
Magnetostrictive Water Pump
,”
Proc. SPIE
0277-786X,
3329
, pp.
694
705
.
3.
Mauck
,
L. D.
, and
Lynch
,
C. S.
, 2000, “
Piezoelectric Hydraulic Pump Development
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
10
), pp.
758
764
.
4.
Mauck
,
L. D.
, and
Lynch
,
C. S.
, 1999, “
Piezoelectric Hydraulic Pump
,”
Proc. SPIE
0277-786X,
3668
, pp.
844
852
.
5.
Nasser
,
K.
,
Leo
,
D. J.
, and
Cudney
,
H. H.
, 2000, “
Compact Piezohydraulic Actuation System
,”
Proc. SPIE
0277-786X,
3991
, pp.
312
322
.
6.
Tan
,
H.
,
Hurst
,
W.
, and
Leo
,
D.
, 2005, “
Performance Modeling of a Piezohydraulic Actuation System With Active Valves
,”
Smart Mater. Struct.
0964-1726,
14
(
1
), pp.
91
110
.
7.
Sirohi
,
J.
, and
Chopra
,
I.
, 2003, “
Design and Development of a High Pumping Frequency Piezoelectric-Hydraulic Hybrid Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
3
), pp.
135
147
.
8.
Ellison
,
J. A.
,
Sirohi
,
J.
, and
Chopra
,
I.
, 2004, “
Design and Testing of a Bidirectional Magnetostrictive-Hydraulic Hybrid Actuator
,”
Proc. SPIE
0277-786X,
5390
, pp.
483
494
.
9.
John
,
S.
,
Sirohi
,
J.
,
Wang
,
G.
, and
Wereley
,
N. M.
, 2007, “
Comparison of Piezoelectric, Magnetostrictive, and Electrostrictive Hybrid Hydraulic Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
(
10
), pp.
1035
1048
.
10.
Chaudhuri
,
A.
,
Yoo
,
J. -H.
,
Wereley
,
N. M.
, and
Nerssesian
,
N.
, 2006, “
Scaling-Up Issues With a Magnetostrictive Hydraulic Pump
,”
Proc. ASME IMECE
, Paper No. IMECE2006-15695, Chicago, IL.
11.
Chaudhuri
,
A.
,
Yoo
,
J. -H.
, and
Wereley
,
N. M.
, 2009, “
Design, Test and Model of a Hybrid Magnetostrictive Hydraulic Actuator
,”
Smart Mater. Struct.
0964-1726,
18
(
8
), p.
085019
.
12.
Lee
,
D. G.
,
Or
,
S. W.
, and
Carman
,
G. P.
, 2004, “
Design of a Piezoelectric-Hydraulic Pump With Active Valves
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
(
2
), pp.
107
115
.
13.
Ullmann
,
A.
, and
Fono
,
I.
, 2002, “
The Piezoelectric Valve-Less Pump—Improved Dynamic Model
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
655
664
.
14.
Bridger
,
K.
,
Sewell
,
J. M.
,
Cooke
,
A. V.
,
Lutian
,
J. L.
,
Kohlhafer
,
D.
,
Small
,
G. E.
, and
Kuhn
,
P. M.
, 2004, “
High Pressure Magnetostrictive Pump Development: A Comparison of Prototype and Modeled Performance
,”
Proc. SPIE
0277-786X,
5388
, pp.
246
257
.
16.
Anderson
,
E.
,
Lindler
,
J.
, and
Regelbrugge
,
M.
, 2002, “
Smart Material Actuator With Long Stroke and High Power Output
,”
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Denver, CO.
17.
Sneed
,
R.
,
Smith
,
R. R.
,
Cash
,
M. F.
,
Bales
,
G. L.
, and
Anderson
,
E. H.
, 2006, “
Development of Smart Material—Hydraulic Pumps and Actuators
,”
Proc. ASME IMECE
, Chicago, IL.
18.
Yoo
,
J. -H.
, and
Wereley
,
N. M.
, 2004, “
Performance of a Magnetorheological Hydraulic Power Actuation System
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
(
11
), pp.
847
858
.
19.
Yoo
,
J. -H.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
, 2005, “
A Magnetorheological Piezohydraulic Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
11–12
), pp.
945
953
.
20.
Nosse
,
D. T.
, and
Dapino
,
M. J.
, 2007, “
Magnetorheological Valve for Hybrid Electrohydrostatic Actuation
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
(
11
), pp.
1121
1136
.
21.
John
,
S.
,
Chaudhuri
,
A.
, and
Wereley
,
N. M.
, 2008, “
A Magnetorheological Actuation System: Test and Model
,”
Smart Mater. Struct.
0964-1726,
17
(
2
), p.
025023
.
22.
Chaudhuri
,
A.
, and
Wereley
,
N. M.
, 2008, “
Design and Testing of a PMN-PT Based Compact Hybrid Actuator
,” ASME Paper No. SMASIS08-495, Ellicott City, MD.
23.
Chaudhuri
,
A.
, 2008, “
Self-Contained Hybrid Electro-Hydraulic Actuators Using Magnetostrictive and Electrostrictive Materials
,” Ph.D. thesis, Department of Aerospace Engineering, University of Maryland, College Park, MD.
24.
Park
,
S. E.
, and
Hackenberger
,
W.
, 2002, “
High Performance Single Crystal Piezoelectrics: Applications and Issues
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
6
(
1
), pp.
11
18
.
25.
Hall
,
A.
,
Allahverdi
,
M.
, and
Akdogan
,
E. K.
, 2005, “
Development and Electromechanical Properties of Multimaterial Piezoelectric and Electrostrictive PMN-PT Monomorph Actuators
,”
J. Electroceram.
1385-3449,
15
(
2
), pp.
143
150
.
26.
Giurgiutiu
,
V.
,
Rogers
,
C. A.
, and
Chaudhry
,
Z.
, 1996, “
Energy-Based Comparison of Solid-State Induced-Strain Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
(
1
), pp.
4
14
.
27.
Tang
,
P.
,
Palazzolo
,
A. B.
,
Kascak
,
A. F.
, and
Montague
,
G.
, 1997, “
Electromechanical Modeling of Hybrid Piezohydraulic Actuator System for Active Vibration Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
(
1
), pp.
10
18
.
28.
Liang
,
C.
,
Sun
,
F. P.
, and
Rogers
,
C. A.
, 1996, “
Electro-Mechanical Impedance Modeling of Active Material Systems
,”
Smart Mater. Struct.
0964-1726,
5
(
2
), pp.
171
186
.
29.
Giurgiutiu
,
V.
,
Rogers
,
C. A.
, and
Chaudhry
,
Z.
, 1997, “
Design of Displacement-Amplified Induced-Strain Actuators for Maximum Energy Output
,”
J. Mech. Des.
1050-0472,
119
(
4
), pp.
511
517
.
30.
Heverly
,
D. E.
, II
,
Wang
,
K. W.
, and
Smith
,
E. C.
, 2004, “
Dual-Stack Piezoelectric Device With Bidirectional Actuation and Improved Performance
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
(
7
), pp.
565
574
.
31.
Nasser
,
K.
, and
Leo
,
D. J.
, 2000, “
Efficiency of Frequency-Rectified Piezohydraulic and Piezopneumatic Actuation
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
10
), pp.
798
814
.
32.
Oates
,
W. S.
, and
Lynch
,
C. S.
, 2001, “
Piezohydraulic Hydraulic Pump System Dynamic Model
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
(
11
), pp.
737
744
.
33.
Cadou
,
C.
, and
Zhang
,
B.
, 2003, “
Performance Modeling of a Piezo-Hydraulic Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
3
), pp.
149
160
.
34.
John
,
S.
,
Chaudhuri
,
A.
,
Cadou
,
C.
, and
Wereley
,
N. M.
, 2009, “
Unsteady Fluid Flow in Hybrid Hydraulic Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
(
18
), pp.
2201
2214
.
35.
Regelbrugge
,
M. E.
,
Lindler
,
J.
, and
Anderson
,
E. H.
, 2003, “
Design Model for Piezohydraulic Actuators
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Paper No. AIAA-2003-1640, Norfolk, VA, pp.
2163
2171
.
36.
Sirohi
,
J.
,
Cadou
,
C.
, and
Chopra
,
I.
, 2005, “
Investigation of the Dynamic Characteristics of a Piezohydraulic Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
6
), pp.
481
492
.
37.
The Lee Company
, 2006, Technical Hydraulic Handbook, Westbrook, CN.
38.
Chaudhuri
,
A.
, and
Wereley
,
N. M.
, 2007, “
Dynamic Model of a Hybrid Hydraulic Actuator Utilizing Different Smart Materials
,”
Proc. ASME IMECE
, Paper No. IMECE2007-42557, Seattle, WA.
39.
Nersessian
,
N.
,
Chaudhuri
,
A.
,
John
,
S.
,
Wang
,
G.
, and
Wereley
,
N. M.
, 2007, “
Blocked Force and Free Displacement Characterization of PMN-32% PT Stacks
,”
Proc. SPIE
0277-786X,
6526
, p.
652603
.
40.
Ronkanen
,
P.
,
Kallio
,
P.
,
Vilkko
,
M.
, and
Koivo
,
H. N.
, 2004, “
Self Heating of Piezoelectric Actuators: Measurement and Compensation
,”
Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, IEEE
, pp.
313
318
.
41.
Keoschkerjan
,
R.
,
Harutyunyan
,
M.
, and
Wurmus
,
H.
, 2002, “
Analysis of Self-Heating Phenomenon of Piezoelectric Microcomponents Actuated Harmonically
,”
Microsyst. Technol.
0946-7076,
9
(
1–2
), pp.
75
80
.
42.
Blevins
,
R. D.
, 1979,
Formulas for Natural Frequency and Mode Shape
,
Van Nostrand Reinhold
,
New York
.
43.
Yimnirun
,
R.
,
Ananta
,
S.
,
Ngamjarurojana
,
A.
, and
Wongsaenmai
,
S.
, 2005, “
Uniaxial Stress Dependence of Ferroelectric Properties of xPMN-(1-x)PZT Ceramic Systems
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
81
(
6
), pp.
1227
1231
.
44.
IEEE
, 1987, “
IEEE Standard on Piezoelectricity
,” Technical Report No. ANSI/IEEE Std 176-1987, Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017.
45.
Galloni
,
E. E.
, and
Kohen
,
M.
, 1979, “
Influence of the Mass of the Spring on Its Static and Dynamic Effects
,”
Am. J. Phys.
0002-9505,
47
(
12
), pp.
1076
1078
.
46.
Wallach
,
D. L.
,
Beatty
,
W.
,
Beisler
,
K.
,
Chronowski
,
P.
,
Holloway
,
M.
,
Hutchinson
,
R.
,
Kacmarik
,
D.
,
Lesko
,
R.
,
Lutz
,
J.
,
Miller
,
D.
, and
Sivak
,
M.
, 1988, “
The Effect of the Mass of the Center Spring in One-Dimensional Coupled Harmonic Oscillators
,”
Am. J. Phys.
0002-9505,
56
(
12
), pp.
1120
1123
.
47.
Karnopp
,
D.
, 1985, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
(
1
), pp.
100
103
.
48.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
de Wit
,
C. C.
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
0005-1098,
30
(
7
), pp.
1083
1138
.
49.
Olsson
,
H.
,
Astrom
,
K. J.
,
deWit
,
C. C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
, 1998, “
Friction Models and Friction Compensation
,”
Eur. J. Control
0947-3580,
4
(
3
), pp.
176
195
.
50.
Lai
,
T.
, and
Kay
,
P.
, 1993, “
Breakaway Frictions of Dynamic O-Rings in Mechanical Seals
,”
Lubr. Eng.
0024-7154,
49
(
5
), pp.
349
356
.
51.
Parker Hannifin Corporation
, 2001, Parker O-Ring Handbook, Cleveland, OH.
52.
Kim
,
G. -W.
, and
Wang
,
K. W.
, 2009, “
Switching Sliding Mode Force Tracking Control of Piezoelectric-Hydraulic Pump-Based Friction Element Actuation Systems for Automotive Transmissions
,”
Smart Mater. Struct.
0964-1726,
18
(
8
), p.
085004
.
53.
Doeblin
,
E. O.
, 1980,
System Modeling and Response: Theoretical and Experimental Approaches
,
Wiley
,
New York
.
54.
Nasser
,
K.
,
Vujic
,
N.
,
Leo
,
D. J.
, and
Cudney
,
H. H.
, 2001, “
Modeling and Testing of a Piezohydraulic Actuation System
,”
Proc. SPIE
0277-786X,
4327
, pp.
354
365
.
55.
White
,
F. M.
, 1979,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
56.
Rupinsky
,
M. J.
, and
Dapino
,
M. J.
, 2006, “
Smart Material Electrohydrostatic Actuator for Intelligent Transportation Systems
,”
Proc. ASME IMECE
, Paper No. IMECE2006-14542, Chicago, IL.
You do not currently have access to this content.