The outer hair cell (OHC) is known to be the main source of nonlinear activity in the cochlea. In this work, we used a one-dimensional fluid model of the cochlea coupled to a nonlinear model of the mechanical to electric coupling of the OHC and the basilar membrane (BM). The nonlinearity arises from the electromotility and the voltage-dependent stiffness of the OHC, and from the displacement dependence of the conductance of the stereocilia. We used a reciprocal nonlinear piezoelectric model of the OHC in combination with a model of stereocilia conductance depending on BM displacement (which resulted in a nonlinear circuit model). The mechanical properties of the various components of the model were motivated from physiological components of the cochlea. Simulations showed realistic gains in the activity, response saturation at high force level, and two-tone forcing generated distortion products while the shape of the filtering function was not as accurately replicated. We conclude that a cochlear model with a simple 1D fluid representation in combination with nonlinear OHC-stereocilia electromechanical response characteristic qualitatively predicts the compression property of the cochlea and can be used as a tool to investigate the relative importance of the various nonlinearities.

1.
Zweig
,
G.
, 1991, “
Finding the Impedance of the Organ of Corti
,”
J. Acoust. Soc. Am.
0001-4966,
89
(
3
), pp.
1229
1254
.
2.
de Boer
,
E.
, 1995, “
The ‘Inverse Problem’ Solved for a Three-Dimensional Model of the Cochlea. II. Application to Experimental Data Sets
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
904
910
.
3.
Shera
,
C.
, and
Zweig
,
G.
, 1993, “
Dynamic Symmetry Creation: The Origin of Spectral Periodicity in Evoked Otoacoustic Emissions
,”
Biophysics of Hair Cell Sensory Systems
,
H.
Duifhuis
,
J. W.
Horst
,
P.
Dijk
, and
S. M.
van Netten
, eds.,
World Scientific
,
Singapore
, pp.
54
63
.
4.
Zweig
,
G.
, and
Shera
,
C.
, 1995, “
The Origins of Periodicity in the Spectrum of Evoked Otoacoustic Emissions
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
2018
2047
.
5.
Talmadge
,
C.
,
Tubis
,
A.
,
Long
,
G.
, and
Piskorski
,
P.
, 1998, “
Modeling Otoacoustic Emission and Hearing Threshold Fine Structures
,”
J. Acoust. Soc. Am.
0001-4966,
104
(
3
), pp.
1517
1543
.
6.
Brownell
,
W.
,
Bader
,
C.
,
Bertrand
,
D.
, and
de Ribaupierre
,
Y.
, 1985, “
Evoked Mechanical Response of Isolated Cochlear Outer Hair Cells
,”
Science
0036-8075,
227
, pp.
194
196
.
7.
Dallos
,
P.
, 1996, “
The Cochlea. Overview: Cochlear Neurobiology
,”
The Cochlea
,
P.
Dallos
,
A.
Popper
, and
R.
Fay
, eds.,
Springer
,
New York
, pp.
1
43
.
8.
Geisler
,
C.
, 1998,
From Sound to Synapse
,
Oxford University Press
,
New York
.
9.
Pickle
,
J.
, 1988,
An Introduction to the Physiology of Hearing
,
2nd ed.
,
Academic
,
New York
.
10.
Santos-Sacchi
,
J.
, 1992, “
On the Frequency Limit and Phase of Outer Hair Cell Motility: Effect of the Membrane Filter
,”
J. Neurosci.
0270-6474,
12
(
5
), pp.
1906
1916
.
11.
Housley
,
G.
, and
Ashmore
,
J.
, 1992, “
Ionic Currents of Outer Hair Cells Isolated From Guinea-Pig Cochlea
,”
J. Physiol. (London)
0022-3751,
448
, pp.
73
98
.
12.
Tolomeo
,
J.
, and
Steele
,
C.
, 1995, “
Orthotropic Piezoelectric Properties of Cochlear Outer Hair Cell Wall
,”
J. Acoust. Soc. Am.
0001-4966,
97
, pp.
3006
3011
.
13.
Steele
,
C.
,
Baker
,
G.
,
Tolomeo
,
J.
, and
Zetes
,
D.
, 1993, “
Electromechanical Models of Outer Hair Cell Wall
,”
Biophysics of Hair Cell Sensory Systems
,
H.
Duifhuis
,
J. W.
Horst
,
P.
Dijk
, and
S. M.
van Netten
, eds.,
World Scientific
,
Singapore
, pp.
207
214
.
14.
Spector
,
A.
, 2001, “
A Nonlinear Electroelastic Model of the Auditory Outer Hair Cell
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2115
2129
.
15.
Cohen
,
A.
, and
Furst
,
M.
, 2004, “
Integration of Outer Hair Cell Activity in a One-Dimensional Cochlear Model
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
5
), pp.
2185
2192
.
16.
Deo
,
N.
, and
Grosh
,
K.
, 2004, “
Two State Model for Outer Hair Cell Stiffness and Motility
,”
Biophys. J.
0006-3495,
86
(
6
), pp.
3519
3528
.
17.
de Boer
,
E.
, 1996, “
The Cochlea. Mechanics of the Cochlea: Modeling Efforts
,”
The Cochlea
,
P.
Dallos
,
A.
Popper
, and
R.
Fay
, eds.,
Springer
,
New York
, pp.
258
317
.
18.
Ramamoorthy
,
S.
,
Deo
,
N. V.
, and
Grosh
,
K.
, 2007, “
A Mechano-Electro-Acoustical Model for the Cochlea: Response to Acoustic Stimuli
,”
J. Acoust. Soc. Am.
0001-4966,
121
(
5
), pp.
2758
2773
.
19.
Mountain
,
D. C.
, and
Hubbard
,
A. E.
, 1994, “
A Piezoelectric Model of Outer Hair Cell Function
,”
J. Acoust. Soc. Am.
0001-4966,
95
(
1
), pp.
350
354
.
20.
Spector
,
A.
,
Brownell
,
W.
, and
Popel
,
A.
, 2003, “
Effect of Outer Hair Cell Piezoelectricity on High-Frequency Receptor Potentials
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
1
), pp.
453
461
.
21.
Iwasa
,
K. H.
, 2001, “
A Two-State Piezoelectric Model for Outer Hair Cell Motility
,”
Biophys. J.
0006-3495,
81
, pp.
2495
2506
.
22.
Raphael
,
R.
,
Popel
,
A.
, and
Brownell
,
W.
, 2000, “
A Membrane Bending Model of Outer Hair Cell Electromotility
,”
Biophys. J.
0006-3495,
78
(
6
), pp.
2844
2862
.
23.
He
,
D.
, and
Dallos
,
P.
, 1999, “
Somatic Stiffness of Cochlear Outer Hair Cells Is Voltage-Dependent
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
14
), pp.
8223
8228
.
24.
He
,
D.
, and
Dallos
,
P.
, 2000, “
Properties of Voltage-Dependent Somatic Stiffness of Cochlear Outer Hair Cells
,”
J. Assoc. Res. Otolaryngol.
1525-3961,
1
, pp.
64
81
.
25.
Kennedy
,
H. J.
,
Crawford
,
A. C.
, and
Fettiplace
,
R.
, 2005, “
Force Generation by Mammalian Hair Bundles Supports a Role in Cochlear Amplification
,” Letters to Nature,
Nature
0028-0836,
433
, pp.
880
883
.
26.
Diependaal
,
R.
,
Duifhuis
,
H.
,
Hoogstraten
,
H.
, and
Viergever
,
M.
, 1987, “
Numerical Methods for Solving One-Dimensional Cochlear Models in the Time Domain
,”
J. Acoust. Soc. Am.
0001-4966,
82
, pp.
1655
1666
.
27.
Dallos
,
P.
,
Santos-Sacchi
,
J.
, and
Flock
,
A.
, 1982, “
Intracellular Recordings From Cochlear Outer Hair Cells
,”
Science
0036-8075,
218
, pp.
582
584
.
28.
Kros
,
C. J.
,
Lennan
,
G. W.
, and
Richardson
,
G. P.
, 1995,
Transducer Currents and Bundle Movements in Outer Hair Cells of Neonatal Mice
,
Oxford University Press
,
New York
/
Elsevier
,
New York
, pp.
113
125
.
29.
He
,
D.
, 2004, private communication.
30.
Shera
,
C. A.
, 2001, “
Intensity-Invariance of Fine Time Structure in Basilar-Membrane Click Responses: Implications for Cochlear Mechanics
,”
J. Acoust. Soc. Am.
0001-4966,
110
(
1
), pp.
332
348
.
31.
Zwislocki
,
J. J.
, 1979, “
Tectorial Membrane: A Possible Sharpening Effect on the Frequency Analysis in the Cochlea
,”
Acta Otolaryngol.
,
87
(
3
), pp.
267
269
.
32.
Allen
,
J. B.
, 1980, “
Cochlear Micromechanics—A Physical Model of Transduction
,”
J. Acoust. Soc. Am.
0001-4966,
68
, pp.
1660
1670
.
You do not currently have access to this content.