An optimal sensitivity enhancing feedback control has been proposed recently. This method differs from previous sensitivity enhancing approaches because in addition to placing the closed-loop eigenvalues of the interrogated system, the eigenvectors are also optimally placed. This technique addresses two major limitations of frequency-based damage detection methods: the low sensitivity of the frequencies to damages and the limited range of damage scenarios identifiable from frequency-only measurement data. An unresolved challenge is enhancing sensitivity for nonlinear systems. This paper addresses this challenge by using optimal feedback auxiliary signals to enhance sensitivity for damage detection in nonlinear systems. The nonlinearity is accounted for by creating augmented linear models of higher order (in a higher dimensional state space). The methodology for constructing augmented linear systems with this property has been previously proposed by the authors (2008, “Multiple Augmentations of Nonlinear Systems and Generalized Minimum Rank Perturbations for Damage Detection,” J. Sound Vib., 316(1-5), pp. 101–121). Herein, the focus is on generalizing the previous work on sensitivity enhancing feedback and on system augmentation for enhancing sensitivity of damage detection in nonlinear systems. Results obtained by applying the optimal feedback auxiliary signals and optimal augmentation to a nonlinear mass-spring system are presented.

1.
Zimmerman
,
D. C.
, and
Kaouk
,
M.
, 1994, “
Structural Damage Detection Using Minimum Rank Update Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
2
), pp.
222
231
.
2.
Liu
,
P. L.
, 1995, “
Identification and Damage Detection of Trusses Using Modal Data
,”
J. Struct. Eng.
0733-9445,
121
(
4
), pp.
599
608
.
3.
Dascotte
,
E.
, 1990, “
Practical Application of Finite Element Tuning Using Experimental Data
,”
Proceedings of the Eighth International Modal Analysis Conference
, pp.
1032
1037
.
4.
Friswell
,
M. I.
, and
Penny
,
J.
, 1997, “
The Practical Limits of Damage Detection and Location Using Vibration Data
,”
Proceedings of the 11th VPI and SU Symposium on Structural Dynamics and Control
, pp.
31
40
.
5.
Stubbs
,
N.
, and
Osegueda
,
R.
, 1990, “
Global Damage Detection in Solids-Experimental Verification
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
5
(
2
), pp.
81
97
.
6.
Stubbs
,
N.
, and
Osegueda
,
R.
, 1990, “
Global Non-Destructive Damage Evaluation in Solids
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
5
(
2
), pp.
67
79
.
7.
Trivailo
,
P.
,
Plotnikova
,
L. A.
, and
Wood
,
L.
, 1997, “
Enhanced Parameter Identification for Damage Detection and Structural Integrity Assessment Using Twin Structures
,”
Proceedings of the Fifth International Congress on Sound and Vibration
, pp.
1733
1741
.
8.
Nalitolela
,
N. G.
,
Penny
,
J. E. T.
, and
Friswell
,
M. I.
, 1992, “
Mass or Stiffness Addition Technique for Structural Parameter Updating
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
7
(
3
), pp.
157
168
.
9.
Lew
,
J. S.
, and
Juang
,
J. N.
, 2002, “
Structural Damage Detection Using Virtual Passive Controllers
,”
J. Guid. Control Dyn.
0731-5090,
25
(
3
), pp.
419
424
.
10.
Swamidas
,
A. S. J.
, and
Chen
,
Y.
, 1995, “
Monitoring Crack Growth Through Change of Modal Parameters
,”
Journal of Sound and Vibration
,
186
(
2
), pp.
325
343
.
11.
Adams
,
R. D.
,
Cawley
,
P.
,
Pye
,
C. J.
, and
Stone
,
B. J.
, 1978, “
A Vibrational Technique for Non-Destructively Assessing the Integrity of Structures
,”
J. Mech. Eng. Sci.
0022-2542,
20
(
2
), pp.
93
100
.
12.
Ray
,
L. R.
, and
Tian
,
L.
, 1999, “
Damage Detection in Smart Structures Using Sensitivity Enhancing Feedback Control
,”
J. Sound Vib.
0022-460X,
227
(
5
), pp.
987
1002
.
13.
Ray
,
L. R.
,
Koh
,
B. H.
, and
Tian
,
L.
, 2000, “
Damage Detection and Vibration Control in Smart Plates: Towards Multifunctional Smart Structures
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
9
), pp.
725
739
.
14.
Ray
,
L. R.
, and
Marini
,
S.
, 2000, “
Optimization of Control Laws for Damage Detection in Smart Structures
,”
Proceedings of the SPIE Symposium on Mathematics and Control in Smart Structures
,
3984
, pp.
395
402
.
15.
Juang
,
J. N.
,
Lim
,
K. B.
, and
Junkins
,
J. L.
, 1989, “
Robust Eigensystem Assignment for Flexible Structures
,”
J. Guid. Control Dyn.
0731-5090,
12
(
3
), pp.
381
387
.
16.
Koh
,
B. H.
, and
Ray
,
L. R.
, 2004, “
Feedback Controller Design for Sensitivity-Based Damage Localization
,”
J. Sound Vib.
0022-460X,
273
(
1–2
), pp.
317
335
.
17.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
, 2007, “
An Optimal Sensitivity-Enhancing Feedback Control Approach Via Eigenstructure Assignment for Structural Damage Identification
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
6
), pp.
771
783
.
18.
D’Souza
,
K.
, and
Epureanu
,
B. I.
, 2005, “
Damage Detection in Nonlinear Systems Using System Augmentation and Generalized Minimum Rank Perturbation Theory
,”
Smart Mater. Struct.
0964-1726,
14
(
5
), pp.
989
1000
.
19.
D’Souza
,
K.
, and
Epureanu
,
B. I.
, 2008, “
Multiple Augmentations of Nonlinear Systems and Generalized Minimum Rank Perturbations for Damage Detection
,”
J. Sound Vib.
0022-460X,
316
(
1-5
), pp.
101
121
.
20.
D’Souza
,
K.
, and
Epureanu
,
B. I.
, 2008, “
Sensor Placement for Damage Detection in Nonlinear Systems Using System Augmentations
,”
AIAA J.
0001-1452,
46
(
10
), pp.
2434
2442
.
21.
Cunningham
,
T. B.
, 1980, “
Eigenspace Selection Procedures for Closed-Loop Response Shaping With Modal Control
,”
Proceedings of the IEEE Conference on Decision and Control
, pp.
178
186
.
22.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Active Mode Localization in Distributed Parameter Systems With Consideration of Limited Actuator Placement, Part 1: Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
2
), pp.
160
164
.
23.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Active Mode Localization in Distributed Parameter Systems With Consideration of Limited Actuator Placement, Part 2: Simulations and Experiments
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
2
), pp.
165
168
.
24.
Tang
,
J.
, and
Wang
,
K. W.
, 2004, “
Vibration Confinement Via Optimal Eigenvector Assignment and Piezoelectric Networks
,”
J. Vib. Control
1077-5463,
126
(
1
), pp.
27
36
.
25.
Wu
,
T. Y.
, and
Wang
,
K. W.
, 2007, “
Periodic Isolator Design Enhancement Via Vibration Confinement Through Eigenvector Assignment and Piezoelectric Circuitry
,”
J. Vib. Control
1077-5463,
13
(
7
), pp.
989
1006
.
26.
Coleman
,
T.
,
Branch
,
M. A.
, and
Grace
,
A.
, 1999,
Optimization Toolbox User’s Guide
,
3rd ed.
,
Math-Works
,
Natic, MA
.
You do not currently have access to this content.