A linear programming approach designed to eliminate the residual vibration of the two-mass harmonic system subject to friction and undergoing a point-to-point maneuver is proposed and implemented on an experimental test bed. Techniques for design of positive pulse control profiles for nonrobust and robust open loop controller design are explored, where the positive pulses initiate motion and the friction force brings the system to rest. It is shown that consistent results can be obtained from experiments and the robustness against frequency uncertainty results in the reduction in residual vibration as well as steady-state error.

1.
Vanderplaats
,
G. N.
, 1984,
Numerical Optimization Techniques for Engineering Design With Applications, McGraw-Hill Series in Mechanical Engineering
,
McGraw-Hill
,
New York
.
2.
Driessen
,
B. J.
, 2000, “
On-Off Minimum-Time Control With Limited Fuel Usage: Near Global Optima Via Linear Programming
,”
Proceedings of the American Control Conference, ACC
, pp.
3875
3877
.
3.
Bashein
,
G.
, 1971, “
A Simplex Algorithm for On-Line Computation of Time Optimal Controls
,”
IEEE Trans. Autom. Control
0018-9286,
16
, pp.
479
482
.
4.
Kim
,
M.
, and
Engell
,
S.
, 1994, “
Speed-Up of Linear Programming for Time-Optimal Control
,”
Proceedings of the American Control Conference, ACC
.
5.
Singh
,
T.
, and
Vadali
,
S. R.
, 1994, “
Robust Time-Optimal Control: A Frequency Domain Approach
,”
J. Guid. Control Dyn.
0731-5090,
17
, pp.
346
353
.
6.
Singhose
,
W.
,
Singh
,
T.
, and
Seering
,
W.
, 1999, “
On-Off Control With Specified Fuel Usage
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
206
212
.
7.
Yang
,
S.
, and
Tomizuka
,
M.
, 1988, “
Adaptive Pulse Width Control for Precise Positioning Under the Influence of Stiction and Coulomb Friction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
, pp.
221
227
.
8.
van de Wijdeven
,
J.
, and
Singh
,
T.
, 2003, “
Adaptive Pulse Amplitude Pulse Width Control of Systems Subject to Coulomb and Viscous Friction
,”
Proceedings of the American Control Conference
, Denver, CO.
9.
Kim
,
B. J.
, and
Chung
,
W. K.
, 2002, “
Motion Control of Precision Positiong Systems Using Adaptive Compensation
,”
Proceedings of the American Control Conference
, pp.
4589
4594
.
10.
Altpeter
,
F.
,
Myszkorowski
,
P.
,
Kocher
,
M.
, and
Longchamp
,
R.
, 1997, “
Friction Compensation: PID Synthesis and State Control
,”
Proceedings of the European Control Conference
, p.
TH
-M-
I1
.
11.
Wu
,
R. -H.
, and
Tung
,
P. -C.
, 2004, “
Fast Pointing Control for Systems With Stick-Slip Function
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
614
626
.
12.
Kwatny
,
H.
,
Teolis
,
C.
, and
Mattice
,
M.
, 2002, “
Variable Structure Control of Systems With Uncertain Nonlinear Friction
,”
Automatica
0005-1098,
38
, pp.
1251
1256
.
13.
Armstrong
,
B.
,
Neevel
,
D.
, and
Kusik
,
T.
, 2001, “
New Results in NPID Control: Tracking, Integral Control, Friction Compensation and Experimental Results
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
, pp.
399
406
.
14.
Rathbun
,
D. B.
,
Berg
,
M. C.
, and
Buffinton
,
K. W.
, 2003, “
Pulse Width Control for Precise Positioning of Structurally Flexible Systems Subject to Stiction and Coulomb Friction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
131
-
138
.
15.
Hamamoto
,
K.
,
Fukuda
,
T.
, and
Sugie
,
T.
, 2003, “
Iterative Feedback Tuning of Controllers for a Two-Mass-Spring System With Friction
,”
Control Eng. Pract.
0967-0661,
11
, pp.
1061
1068
.
16.
Driessen
,
B.
, and
Sadegh
,
N.
, 2001, “
Minimum-Time Control of Systems With Coulomb Friction: Near Global Optima Via Mixed Integer Linear Progamming
,”
Opt. Control Appl. Methods
0143-2087,
22
, pp.
51
62
.
17.
Lawrence
,
J.
,
Singhose
,
W.
, and
Hekeman
,
K.
, 2005, “
Friction-Compensating Input Shaping for Vibration Reduction
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
307
314
.
18.
Kim
,
J. J.
, and
Singh
,
T.
, 2004, “
Desensitized Control of Vibratory Systems With Friction: Linear Programming Approach
,”
Opt. Control Appl. Methods
0143-2087,
25
, pp.
165
180
.
19.
Liu
,
S. -W.
, and
Singh
,
T.
, 1997, “
Robust Time-Optimal Control of Flexible Structures With Parametric Uncertainty
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
743
748
.
20.
Travis
,
J.
, 2002,
LABVIEW for Everyone, National Instruments Virtual Instrumentation Series
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
21.
Bishop
,
R. H.
, 2001,
Learning With LABVIEW
,
6th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
The Math Works, Inc.
, 2001, “
Optimization Toolbox For Use With MATLAB Version 2.1.1
,” Release 12.1, online only.
23.
Larson
,
R.
, and
Farber
,
B.
, 2003,
Elementary Statistics: Picturing the World
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.