Abstract

The gas-liquid two-phase slug flow regime phenomenon is commonly encountered in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Slug flow regime normally occurs for a range of pipe inclinations, and gas and liquid flowrates. A pipeline operating in the slug flow regime creates high fluctuations in gas and liquid flowrates at the outlet. Therefore, the monitoring of slugs and the measurement of their characteristics, such as the gas void fraction, are necessary to minimize the disruption of downstream process facilities. In this paper, a correlation between gas void fraction, absolute acoustic emission energy, and slug velocities in a two-phase air/water flow regime was developed using an acoustic emission technique. It is demonstrated that the gas void fraction can be determined by measurement of acoustic emission.

1.
Kordyban
,
E. S.
, and
Ranov
,
T.
, 1970, “
Mechanism of Slug Formation in Horizontal Two-Phase Flow
,”
ASME J. Basic Eng.
0021-9223,
92
, pp.
857
864
.
2.
Wallis
,
G. B.
, and
Dodson
,
J. E.
, 1973, “
The Onset of Slugging in Horizontal Stratified Air-Water Flow
,”
Int. J. Multiphase Flow
0301-9322,
1
(
1
), pp.
173
193
.
3.
Taitel
,
Y.
, and
Dukler
,
A. E.
, 1976, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Flow
,”
AIChE J.
0001-1541,
22
(
1
), pp.
47
55
.
4.
Mishima
,
K.
, and
Ishii
,
M.
, 1980, “
Theoretical Prediction of Onset of Horizontal Slug Flow
,”
ASME Trans. J. Fluids Eng.
0098-2202,
102
, pp.
441
445
.
5.
Fan
,
Z.
,
Lusseyran
,
F.
, and
Hanratty
,
T. J.
, 1993, “
Initiation of Slugs in Horizontal Gas-Liquid Flows
,”
AIChE J.
0001-1541,
39
, pp.
1741
1753
.
6.
Hale
,
C. P.
, 2000, “
Slug Formation, Growth and Decay in Gas-Liquid Flow
,” Ph.D. thesis, Imperial College, London, UK.
7.
Barnea
,
D.
, and
Taitel
,
Y.
, 1993, “
A Model for Slug Length Distribution in Gas-Liquid Slug Flow
,”
Int. J. Multiphase Flow
0301-9322,
19
(
5
), pp.
829
838
.
8.
Nydal
,
O. J.
,
Pintus
,
S.
, and
Andreussi
,
P.
, 1992, “
Statistical Characterisation of Slug Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
18
(
3
), pp.
439
453
.
9.
Strasberg
,
M.
, 1956, “
Gas Bubbles as Sources of Sound in Liquids
,”
J. Acoust. Soc. Am.
0001-4966,
28
(
1
), pp.
20
26
.
10.
ISO 22096
, 2007, “
Condition Monitoring and Diagnostics of Machines. Acoustic Emission
.”
11.
Pao
,
Y. -H.
,
Gajewski
,
R. R.
, and
Ceranoglu
,
A. N.
, 1979, “
Acoustic Emission and Transient Waves in an Elastic Plate
,”
J. Acoust. Soc. Am.
0001-4966,
65
(
1
), pp.
96
102
.
12.
Pollock
,
A. A.
, 1989, “
Acoustic Emission Inspection
,” Physical Acoustics Corporation, Technical Report No. TR-103-96-12/89.
13.
Mathews
,
J. R.
, 1983,
Acoustic Emission
,
Gordon and Breach Science
,
New York
.
14.
Mba
,
D.
, and
Rao
,
R. B. K. N.
, 2006, “
Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps, Gearboxes, Engines, and Rotating Structures
,”
Shock Vib. Dig.
0583-1024,
38
(
1
), pp.
3
16
.
15.
Bragg Sir
,
W. H.
, 1921,
The World of Sound
,
Bell
,
London
, pp.
69
74
.
16.
Minnaert
,
M.
, 1933, “
On Musical Air-Bubbles and the Sounds of Running Water
,”
Philos. Mag.
0031-8086,
16
, pp.
235
248
.
17.
Leighton
,
T. G.
, 1994,
The Acoustic Bubble
,
Academic
,
London
.
18.
Manasseh
,
R.
, 1997, “
Acoustic Sizing of Bubbles at Moderate to High Bubbling Rates
,”
Fourth World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Bruxelles, Belgium, pp.
943
947
.
19.
Al-Masry
,
W. A.
,
Ali
,
E. M.
, and
Aqeel
,
Y. M.
, 2005, “
Determination of Bubble Characteristics in Bubble Columns Using Statistical Analysis of Acoustic Sound Measurements
,”
Chem. Eng. Res. Des.
0263-8762,
83
(
10
), pp.
1196
1207
.
20.
Pandit
,
A. B.
,
Varley
,
J.
,
Thorpe
,
R. B.
, and
Davidson
,
J. F.
, 1992, “
Measurement of Bubble Size Distribution: An Acoustic Technique
,”
Chem. Eng. Sci.
0009-2509,
47
(
5
), pp.
1079
1089
.
21.
Longuet-Higgins
,
M. S.
, 1991, “
Bubble Noise
,”
IMA J. Appl. Math.
0272-4960,
46
, pp.
67
70
.
22.
Boyd
,
J. W. R.
, and
Varley
,
J.
, 1998, “
Sound Measurement as a Means of Gas Bubble Sizing in Aerated Agitated Tanks
,”
AIChE J.
0001-1541,
44
(
8
), pp.
1731
1739
.
23.
Derakhshan
,
O.
,
Houghton
,
J. R.
, and
Jones
,
R. K.
, 1989, “
Cavitation Monitoring of Hydroturbines With RMS Acoustic Emission Measurements
,”
World Meeting on Acoustic Emission
, pp.
305
315
.
24.
Hutton
,
P.
, 1969, “
Detecting Acoustic Emission in the Presence of Hydraulic Noise
,”
Int. J. Nondestr. Test.
0020-7470,
2
(
2
), pp.
111
115
.
25.
Sikorska
,
J. Z.
, and
Hodkiewicz
,
M.
, 2005, “
Comparison of Acoustic Emission, Vibration and Dynamic Pressure Measurements for Detecting Change in Flow Conditions on a Centrifugal Pump
,”
18th International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2005)
, Cranfield, UK, Aug. 31–Sept. 2,
D.
Mba
and
R.
Rao
, eds.
26.
Alfayez
,
L.
, and
Mba
,
D.
, 2005, “
Detection of Incipient Cavitation and Determination of the Best Efficiency Point for Centrifugal Pumps Using Acoustic Emission
,”
Proc. Inst. Mech. Engr., Part E: Journal of Process Mechanical Engineering
,
219
(
4
), pp.
327
344
.
27.
Neill
,
G. D.
,
Reuben
,
R. L.
,
Sandford
,
P. M.
,
Brown
,
E. R.
, et al.
, 1997, “
Detection of Incipient Cavitation in Pumps Using Acoustic Emission
,”
Proc. Inst. Mech. Engr., Part E: Journal of Process Mechanical Engineering
,
211
, pp.
267
277
.
28.
Derakhshan
,
O.
,
Houghton
,
J. R.
,
Jones
,
R. K.
, and
March
,
P. A.
, 1991, “
Cavitation Monitoring of Hydroturbines With RMS Acoustic Emission Measurement
,”
ASTM Spec. Tech. Publ.
0066-0558,
1077
, pp.
305
315
.
29.
Darling
,
J.
, and
Johnston
,
D. N.
, 1991, “
The Use of Acoustic Emission for Condition Monitoring in High-Pressure Hydraulic Pumps
,”
Proceedings of the Eurotech Direct 91
,
IMechE
,
Birmingham, UK
, pp.
137
143
.
30.
Gregory
,
G. A.
,
Nicholson
,
M.
, and
Aziz
,
K.
, 1978, “
Correlation of the Liquid Volume Fraction in the Slug for Horizontal Gas Liquid Slug Flow
,”
Int. J. Multiphase Flow
0301-9322,
4
(
1
), pp.
33
39
.
31.
Hughmark
,
G. A.
, 1962, “
Holdup in Gas-Liquid Flows
,”
Chem. Eng. Prog.
0360-7275,
58
, pp.
62
65
.
32.
Ferschneider
,
G.
, 1983, “
́Ecoulements Diphasiques Gas-Liquid á Poches et á Bouchon en Conduits
,” Ph.D. thesis, Imperial College, London, UK.
33.
Nicklin
,
D. J.
, 1962, “
Two-Phase Bubble Flow
,”
Chem. Eng. Sci.
0009-2509,
17
, pp.
693
702
.
34.
Al-lababidi
,
S.
, and
Sanderson
,
M. L.
, 2007, “
Non-Invasive and Non-Intrusive Ultrasonic Techniques With Slug Closure Model for Two-Phase Gas/Liquid Flowrate Measurements
,”
13th International Conference on Multiphase Production Technology’07
, Edinburgh, UK, Jun. 13–15.
35.
Al-lababidi
,
S.
, and
Sanderson
,
M. L.
, 2005, “
Non-Invasive Method for Velocity and Slug Length Measurements in Gas/Liquid Flow in Horizontal Pipes
,”
ASME Proceedings of IMECE2005
, Orlando, FL, Nov. 5–11.
36.
Woldesemayat
,
M. A.
, and
Ghajar
,
A. J.
, 2007, “
Comparison of Void Fraction Correlation for Different Flow Pattern in Horizontal and Upward Inclined Pipes
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
347
370
.
37.
Addali
,
A.
,
Al-Lababidi
,
S.
, and
Mba
,
D.
, 2007, “
Application of Acoustic Emission to Monitoring Two Phase Flow
,”
Fourth International Conference on Condition Monitoring
, Harrogate, UK.
38.
Kolmogorov
,
A. N.
, 1949, “
On the Breaking of Drops in Turbulent Flow
,”
Dokl. Akad. Nauk
0869-5652,
66
, pp.
825
828
.
39.
Hinze
,
J. O.
, 1955, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
0001-1541,
1
, pp.
289
295
.
40.
Barnea
,
D.
, and
Brauner
,
N.
, 1985, “
Holdup of the Liquid Slug in Two-Phase Intermittent Flow
,”
Int. J. Multiphase Flow
0301-9322,
11
, pp.
43
49
.
41.
Brauner
,
N.
, 2001, “
The Prediction of Dispersed Flows Boundaries in Liquid–Liquid and Gas–Liquid Systems
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
885
910
.
42.
Brauner
,
N.
, and
Ullmann
,
A.
, 2002, “
Prediction of Holdup in Liquid Slugs
,”
Heat 2002, Third International Conference on Transport Phenomena in Multiphase Flow
, pp.
1
15
, IFFM No. 112.
43.
Adamson
,
A. W.
, 1990,
Physical Chemistry of Surfaces
, 5th ed.,
Wiley
,
New York
.
44.
Brauner
,
N.
, and
Ullmann
,
A.
, 2004, “
Modelling of Gas Entrainment From Taylor Bubbles. Part B: A Stationary Bubble
,”
Int. J. Multiphase Flow
0301-9322,
30
, pp.
273
290
.
45.
Brodkey
,
R. S.
, 1967,
The Phenomena of Fluid Motions
,
Addison-Wesley
,
Reading, MA
.
46.
Barnea
,
D.
,
Shoham
,
O.
, and
Taitel
,
Y.
, 1982, “
Flow Pattern Transition for Vertical Downward Two Phase Flow
,”
Chem. Eng. Sci.
0009-2509,
37
, pp.
741
744
.
47.
White
,
F. M.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
.
48.
Chen
,
X. T.
,
Cai
,
X. D.
, and
Brill
,
J. P.
, 1997, “
Gas-Liquid Stratified-Wavy Flow in Horizontal Pipelines
,”
ASME J. Energy Resour. Technol.
0195-0738,
119
, pp.
209
216
.
49.
Zhang
,
H. -Q.
,
Wang
,
Q.
,
Sarica
,
C.
, and
Brill
,
J. P.
, 2003, “
Unified Model for Gas-Liquid Pipe Flow Via Slug Dynamics—Part 2: Model Validation
,”
ASME J. Energy Resour. Technol.
0195-0738,
125
, pp.
266
273
.
You do not currently have access to this content.