Abstract
The gas-liquid two-phase slug flow regime phenomenon is commonly encountered in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Slug flow regime normally occurs for a range of pipe inclinations, and gas and liquid flowrates. A pipeline operating in the slug flow regime creates high fluctuations in gas and liquid flowrates at the outlet. Therefore, the monitoring of slugs and the measurement of their characteristics, such as the gas void fraction, are necessary to minimize the disruption of downstream process facilities. In this paper, a correlation between gas void fraction, absolute acoustic emission energy, and slug velocities in a two-phase air/water flow regime was developed using an acoustic emission technique. It is demonstrated that the gas void fraction can be determined by measurement of acoustic emission.