This paper extends the scatterer polymerization methodology to three-dimensional multiple scattering of elastic waves by spherical inclusions. The methodology was originally developed for analyzing multiple scattering of elastic antiplane shear waves in two-dimensional spaces. The analytically exact solution of multiple scattering is reformulated by using this methodology, which is verified by using different ways, with or without scatterer polymerization, to solve physically the same multiple scattering problem. As an application example, the band gap formation for elastic wave propagating in a cubic lattice of spherical scatterers is observed through a series of numerical simulations. These simulations also demonstrate the capability of the present computational system for simulating three-dimensional multiple scattering of elastic waves.

1.
Pao
,
Y. -H.
, and
Mow
,
C. -C.
, 1971,
Diffraction of Elastic Waves and Dynamic Stress Concentrations
,
Crane Russak
,
New York
.
2.
Ying
,
C. F.
, and
Truell
,
R.
, 1956, “
Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid
,”
J. Appl. Phys.
0021-8979,
27
, pp.
1086
1097
.
3.
Einspruch
,
N. G.
,
Witterholt
,
E. J.
, and
Truell
,
R.
, 1960, “
Scattering of a Plane Transverse Wave by a Spherical Obstacle in an Elastic Medium
,”
J. Appl. Phys.
0021-8979,
31
, pp.
806
818
.
4.
Johnson
,
G.
, and
Truell
,
R.
, 1965, “
Numerical Computations of Elastic Scattering Cross Section
,”
J. Appl. Phys.
0021-8979,
36
, pp.
3466
3475
.
5.
Norris
,
A. N.
, 1986, “
Scattering of Elastic Waves by Spherical Inclusions With Applications to Low Frequency Wave Propagation in Composites
,”
Int. J. Eng. Sci.
0020-7225,
24
, pp.
1271
1282
.
6.
Hinders
,
M. K.
, 1991, “
Plane-Elastic-Wave Scattering From an Elastic Sphere
,”
Nuovo Cimento B
0369-3554,
106
, pp.
799
818
.
7.
Sayers
,
C. M.
, and
Smith
,
R. L.
, 1983, “
Ultrasonic Velocity and Attenuation in an Epoxy Matrix Containing Lead Inclusions
,”
J. Phys. D
0022-3727,
16
, pp.
1189
1194
.
8.
Foldy
,
L. L.
, 1945, “
The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Distributed Scatterers
,”
Phys. Rev.
0096-8250,
67
, pp.
107
119
.
9.
Gaunaurd
,
G. C.
, and
Überall
,
H.
, 1983, “
Resonance Effects and the Ultrasonic Effective Properties of Particulate Composites
,”
J. Acoust. Soc. Am.
0001-4966,
74
, pp.
305
313
.
10.
Twersky
,
V.
, 1952, “
Multiple Scattering of Radiation by an Arbitrary Planar Configuration of Cylinders and by Two Parallel Cylinders
,”
J. Appl. Phys.
0021-8979,
23
, pp.
407
414
.
11.
Twersky
,
V.
, 1962, “
Multiple Scattering by Arbitrary Configurations in Three Dimensions
,”
J. Math. Phys.
0022-2488,
3
, pp.
83
91
.
12.
Waterman
,
P. C.
, 1969, “
New Formulation of Acoustic Scattering
,”
J. Acoust. Soc. Am.
0001-4966,
45
, pp.
1417
1429
.
13.
Varatharajulu
,
V.
, and
Pao
,
Y. -H.
, 1976, “
Scattering Matrix for Elastic Waves I. Theory
,”
J. Acoust. Soc. Am.
0001-4966,
60
, pp.
556
566
.
14.
Waterman
,
P. C.
, 1976, “
Matrix Theory of Elastic Wave Scattering
,”
J. Acoust. Soc. Am.
0001-4966,
60
, pp.
567
580
.
15.
Boström
,
A.
, 1980, “
Multiple Scattering of Elastic Waves by Bounded Obstacles
,”
J. Acoust. Soc. Am.
0001-4966,
67
, pp.
399
413
.
16.
Doyle
,
T. E.
, 2006, “
Iterative Simulation of Elastic Wave Scattering in Arbitrary Dispersions of Spherical Particles
,”
J. Acoust. Soc. Am.
0001-4966,
119
, pp.
2599
2610
.
17.
Economou
,
E. N.
, and
Sigalas
,
M.
, 1994, “
Stop Bands for Elastic Waves in Periodic Composite Materials
,”
J. Acoust. Soc. Am.
0001-4966,
95
, pp.
1734
1740
.
18.
Tanaka
,
Y.
, and
Tamura
,
S.
, 1999, “
Acoustic Stop Bands of Surface and Bulk Modes in Two-Dimensional Phononic Lattices Consisting of Aluminum and a Polymer
,”
Phys. Rev. B
0163-1829,
60
, pp.
13294
13297
.
19.
Vasseur
,
J. O.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
,
Kushwaha
,
M. S.
, and
Halevi
,
P.
, 1994, “
Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbon/Epoxy Composite and Some Metallic Systems
,”
J. Phys.: Condens. Matter
0953-8984,
6
, pp.
8759
8770
.
20.
Sigalas
,
M. M.
, and
Garcia
,
N.
, 2000, “
Theoretical Study of Three Dimensional Elastic Band Gaps With the Finite-Difference Time-Domain Method
,”
J. Appl. Phys.
0021-8979,
87
, pp.
3122
3125
.
21.
Kafesaki
,
M.
, and
Economou
,
E. N.
, 1999, “
Theoretical Study of Three Dimensional Elastic Band Gaps With the Finite-Difference Time-Domain Method
,”
Phys. Rev. B
0163-1829,
60
, pp.
11993
12001
.
22.
Psarobas
,
I. E.
,
Stefanou
,
N.
, and
Modinos
,
A.
, 2000, “
Scattering of Elastic Waves by Periodic Arrays of Spherical Bodies
,”
Phys. Rev. B
0163-1829,
62
, pp.
278
291
.
23.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2000, “
Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment
,”
Phys. Rev. B
0163-1829,
62
, pp.
2446
2457
.
24.
Cai
,
L. -W.
, and
Williams
,
J. H.
, Jr.
, 1999, “
Large Scale Multiple Scattering Problems
,”
Ultrasonics
0041-624X,
37
, pp.
453
462
.
25.
Cai
,
L. -W.
, and
Williams
,
J. H.
, Jr.
, 1999, “
Full-Scale Simulations of Elastic Wave Scattering in Fiber-Reinforced Composites
,”
Ultrasonics
0041-624X,
37
, pp.
463
482
.
26.
Cai
,
L. -W.
, and
Williams
,
J. H.
, Jr.
, 1999, “
NDE Via Stop Band Formation in Fiber Reinforced Composites Having Square Fiber Arrangements
,”
Ultrasonics
0041-624X,
37
, pp.
483
492
.
27.
Morse
,
P. M.
, and
Feshbach
,
H.
, 1953,
Methods of Theoretical Physics
,
McGraw-Hill
,
New York
.
28.
Chew
,
W. C.
, 1990,
Waves and Fields in Inhomogeneous Media
,
Van Nostrand Reinhold
,
New York
.
29.
Condon
,
E.
, and
Shortley
,
G. H.
, 1935,
The Theory of Atomic Spectra
,
Cambridge University Press
,
Cambridge, England
.
30.
Stratton
,
J. A.
, 1941,
Electromagnetic Theory
,
McGraw-Hill
,
New York
.
31.
Chew
,
W. C.
, 1961, “
Addition Theorem for Spherical Wave Functions
,”
Q. Appl. Math.
0033-569X,
19
, pp.
15
24
.
32.
Cruzan
,
O. R.
, 1962, “
Translational Addition Theorem for Spherical Vector Wave Functions
,”
Q. Appl. Math.
0033-569X,
20
, pp.
33
40
.
33.
Chew
,
W. C.
, 1990, “
A Derivation of the Vector Addition Theorem
,”
Microwave Opt. Technol. Lett.
0895-2477,
3
, pp.
256
260
.
34.
Chew
,
W. C.
, and
Wang
,
Y. M.
, 1993, “
Efficient Ways to Compute the Vector Addition Theorem
,”
J. Electromagn. Waves Appl.
0920-5071,
7
, pp.
651
665
.
35.
Tough
,
R. J. A.
, 1977, “
The Transformation Properties of Vector Multipole Fields Under a Translation of Coordinate Origin
,”
J. Phys. A
0305-4470,
10
, pp.
1079
1087
.
36.
Cai
,
L. -W.
, 1998, “
Full-Scale Simulation of Multiple Scattering of Elastic Waves in Fiber Reinforced Composites
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
37.
Chew
,
W. C.
, 1992, “
Recurrence Relations for Three-Dimensional Scalar Addition Theorem
,”
J. Electromagn. Waves Appl.
0920-5071,
6
, pp.
133
142
.
38.
Hearn
,
E. J.
, 1997,
An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials
(
Mechanics of Materials
), Vol.
1
,
3rd ed.
,
Elsevier
,
New York
.
39.
Barbero
,
E. J.
, 1999,
Introduction to Composite Materials Design
,
Taylor and Francis
,
London
, p.
29
.
40.
Hannay
,
J. H.
, and
Nye
,
J. F.
, 2004, “
Fibonacci Numerical Integration on a Sphere
,”
J. Phys. A
0305-4470,
37
, pp.
11591
11601
.
41.
Liu
,
Z.
, 2007, “
Three-Dimensional Multiple Scattering of Elastic Waves by Spherical Inclusions
,” Ph.D. thesis, Kansas State University, Manhattan, KS.
You do not currently have access to this content.