This study addresses the feasibility and effectiveness of a self-powered magnetorheological (MR) damper using in-situ energy harvested from the vibration and shock environment in which it is deployed. To achieve this, an energy-harvesting device is designed and added to a MR damper. This energy-harvesting device consists of a stator, a permanent magnet, and a spring and operates as an energy-harvesting dynamic vibration absorber (DVA). The dynamic equation for the self-powered MR damper is derived. To evaluate the vibration isolation capability of the self-powered MR damper, a single-degree-of-freedom engine mount system using the MR damper is simulated. The governing equation of motion for the engine mount system is derived. A parametric study is conducted to find the optimal stiffness of the energy-harvesting DVA for the engine mount system. The isolation performance of the engine mount system employing the self-powered MR damper is theoretically evaluated in the frequency domain.

1.
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2003, “
Vibration Control of a Landing Gear System Featuring Electrorheological/Magnetorheological Fluids
,”
J. Aircr.
0021-8669,
40
(
3
), pp.
432
439
.
2.
Batterbee
,
D. C.
,
Sims
,
N. D.
,
Stanway
,
R.
, and
Rennison
,
M.
, 2007, “
Magnetorheological Landing Gear: 1. A Design Methodology
,”
Smart Mater. Struct.
0964-1726,
16
(
6
), pp.
2429
2440
.
3.
Batterbee
,
D. C.
,
Sims
,
N. D.
,
Stanway
,
R.
, and
Rennison
,
M.
, 2007, “
Magnetorheological Landing Gear: 2. Validation Using Experimental Data
,”
Smart Mater. Struct.
0964-1726,
16
(
6
), pp.
2441
2452
.
4.
Kamath
,
G. M.
,
Wereley
,
N. M.
, and
Jolly
,
M. R.
, 1999, “
Characterization of Magnetorheological Helicopter Lag Dampers
,”
J. Am. Helicopter Soc.
0002-8711,
44
(
3
), pp.
234
248
.
5.
Zhao
,
Y.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2004, “
Semi-Active Damping of Ground Resonance in Helicopters Using Magnetorheological Dampers
,”
J. Am. Helicopter Soc.
0002-8711,
49
(
4
), pp.
468
482
.
6.
Hu
,
W.
, and
Wereley
,
N. M.
, 2008, “
Hybrid Magnetorheological Fluid-Elastomeric Lag Dampers for Helicopter Stability Augmentation
,”
Smart Mater. Struct.
0964-1726,
17
(
4
), p.
045021
.
7.
Choi
,
Y. -T.
,
Wereley
,
N. M.
, and
Jeon
,
Y. -S.
, 2005, “
Semi-Active Vibration Isolation Using Magnetorheological Isolators
,”
J. Aircr.
0021-8669,
42
(
5
), pp.
1244
1251
.
8.
Stelzer
,
G. J.
,
Schulz
,
M. J.
,
Kim
,
J.
, and
Allemang
,
R. J.
, 2003, “
A Magnetorheological Semi-Active Isolator to Reduce Noise and Vibration Transmissibility in Automobiles
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
12
), pp.
743
765
.
9.
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2008, “
Shock Isolation Systems Using Magnetorheological Dampers
,”
ASME J. Vibr. Acoust.
0739-3717,
130
(
2
), p.
024503
.
10.
Brigley
,
M.
,
Choi
,
Y. -T.
,
Wereley
,
N. M.
, and
Choi
,
S. -B.
, 2007, “
Magnetorheological Isolators Using Multiple Fluid Modes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
(
12
), pp.
1143
1148
.
11.
Hiemenz
,
G. J.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2007, “
Semi-Active Control of Vertical Stroking Helicopter Crew Seat for Enhanced Crashworthiness
,”
J. Aircr.
0021-8669,
44
(
3
), pp.
1031
1034
.
12.
Hiemenz
,
G. J.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2003, “
Seismic Control of Civil Structures Utilizing Semi-Active MR Braces
,”
Comput. Aided Civ. Infrastruct. Eng.
1093-9687,
18
, pp.
31
44
.
13.
Liu
,
M.
,
Sethi
,
V.
,
Song
,
G.
, and
Li
,
H.
, 2008, “
Investigation of Locking Force for Stay Cable Vibration Control Using Magnetorheological Fluid Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
130
(
5
), p.
054504
.
14.
John
,
S.
,
Chaudhuri
,
A.
, and
Wereley
,
N. M.
, 2008, “
A Magnetorheological Actuation System: Test and Model
,”
Smart Mater. Struct.
0964-1726,
17
(
4
), p.
045021
.
15.
Hiemenz
,
G. J.
,
Hu
,
W.
, and
Wereley
,
N. M.
, 2008, “
Semi-Active Magnetorheological Helicopter Crew Seat Suspension for Vibration Isolation
,”
J. Aircr.
0021-8669,
45
(
3
), pp.
945
953
.
16.
Nguyen
,
Q. H.
,
Han
,
Y. M.
,
Choi
,
S. -B.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2007, “
Geometry Optimization of MR Valves Constrained in a Specific Volume Using the Finite Element Method
,”
Smart Mater. Struct.
0964-1726,
16
(
6
), pp.
2242
2252
.
17.
Nguyen
,
Q. H.
, and
Choi
,
S. -B.
, 2009, “
Optimal Design of a Vehicle Magnetorheological Damper Considering the Damping Force and Dynamic Range
,”
Smart Mater. Struct.
0964-1726,
18
(
1
), p.
015013
.
18.
Wereley
,
N. M.
, 2008, “
Nondimensional Herschel-Bulkley Analysis of Magnetorheological and Electrorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
19
(
3
), pp.
257
268
.
19.
Hong
,
S. R.
,
John
,
S.
,
Wereley
,
N. M.
,
Choi
,
Y. -T.
, and
Choi
,
S. -B.
, 2008, “
A Unifying Perspective on the Quasi-Steady Analysis of Magnetorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
19
(
8
), pp.
959
976
.
20.
Hong
,
S. R.
,
Choi
,
S. -B.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2005, “
Non-Dimensional Analysis and Design of a Magnetorheological Damper
,”
J. Sound Vib.
0022-460X,
288
(
4–5
), pp.
847
863
.
21.
Sims
,
N. M.
,
Holmes
,
N. J.
, and
Stanway
,
R.
, 2004, “
A Unified Modeling and Model Updating Procedure for ER and MR Vibration Dampers
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
100
121
.
22.
Cook
,
E.
,
Hu
,
W.
, and
Wereley
,
N. M.
, 2007, “
Magnetorheological Bypass Damper Exploiting Flow Through a Porous Channel
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
(
12
), pp.
1197
1203
.
23.
Hitchcock
,
G. H.
,
Wang
,
X.
, and
Gordaninejad
,
F.
, 2007, “
A New Bypass Magnetorheological Fluid Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
5
), pp.
641
647
.
24.
Scruggs
,
J. T.
, and
Iwan
,
W. D.
, 2003, “
Control of a Civil Structure Using an Electric Machine With Semiactive Capability
,”
J. Struct. Eng.
0733-9445,
129
(
7
), pp.
951
959
.
25.
Lesieutre
,
G. A.
,
Ottman
,
G. K.
, and
Hofmann
,
H. F.
, 2004, “
Damping as a Result of Piezoelectric Energy Harvesting
,”
J. Sound Vib.
0022-460X,
269
, pp.
991
1001
.
26.
Cho
,
S. -W.
,
Jung
,
H. -J.
, and
Lee
,
I. -W.
, 2005, “
Smart Passive System Based on Magnetorheological Damper
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
707
714
.
27.
Choi
,
K. -M.
,
Jung
,
H. -J.
,
Lee
,
H. -J.
, and
Cho
,
S. -W.
, 2007, “
Feasibility Study of an MR Damper-Based Smart Passive Control System Employing an Electromagnetic Induction Device
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
2323
2329
.
28.
Wereley
,
N. M.
, and
Pang
,
L.
, 1998, “
Nondimensional Analysis of Semi-Active Electrorheological and Magnetorheological Dampers Using Approximate Parallel Plate Models
,”
Smart Mater. Struct.
0964-1726,
7
, pp.
732
743
.
29.
Lee
,
D. Y.
, and
Wereley
,
N. M.
, 1999, “
Quasi-Steady Herschel-Bulkley Analysis of Electro- and Magneto-Rheological Flow Mode Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
(
10
), pp.
761
769
.
30.
Lindler
,
J.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2003, “
Double Adjustable Elec-trorheological and Magnetorheological Shock Absorbers
,”
Int. J. Veh. Des.
0143-3369,
33
(
1–3
), pp.
189
206
.
31.
Facey
,
W. B.
,
Rosenfeld
,
N. C.
,
Choi
,
Y. -T.
,
Wereley
,
N. M.
,
Choi
,
S. B.
, and
Chen
,
P. C.
, 2005, “
Design and Testing of a Compact Magnetorheological Impact Damper for High Impulsive Loads
,”
Int. J. Mod. Phys. B
0217-9792,
19
(
7–9
), pp.
1549
1555
.
32.
Graves
,
K. E.
,
Toncich
,
D.
, and
Iovenitti
,
P. G.
, 2000, “
Theoretical Comparison of Motional and Transformer EMF Device Damping Efficiency
,”
J. Sound Vib.
0022-460X,
233
(
3
), pp.
441
453
.
33.
Skaar
,
S. E.
,
Krovel
,
O.
,
Nilssen
,
R.
, and
Erstad
,
H.
, 2003, “
Slotless, Toroidal Wound, Axially-Magnetized Permanent Magnet Generator for Small Wind Turbine System
,”
Australasian Universities Power Engineering Conference (AUPEC)
, Christchurch, New Zealand, Paper No. 119.
34.
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2002, “
Comparative Analysis of the Time Response of Electrorheological and Magnetorheological Dampers Using Nondimensional Parameters
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
13
, pp.
443
451
.
You do not currently have access to this content.