A method of estimating damping parameters for multi-degree-of-freedom vibration systems is outlined, involving a balance of dissipated and supplied energies over a cycle of periodic vibration. The power is formulated as the inner product between the velocity and force terms and integrated over a cycle. Conservative terms (mass and stiffness) drop out of the formulation. The displacement response and the input are measured, and the damping coefficients are estimated without knowledge of the mass and stiffness, which can be nonlinear, as illustrated in one example. The identification equations are also obtained with a modal reduction based on proper orthogonal decomposition. The method can be applied with a harmonic motion assumption or by simple numerical integration. The method is illustrated with linear and quadratic damping, in simulations of a four degree-of-freedom system, and in a string with and without noise.

1.
Ibrahim
,
R. A.
, 1994, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos: Part II—Dynamics and Modeling
,”
Appl. Mech. Rev.
0003-6900,
47
(
7
), pp.
227
255
.
2.
Griffin
,
J. H.
, 1980, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
329
333
.
3.
Wang
,
J.-H.
, 1996, “
Design of a Friction Damper to Control Vibration of Turbine Blades
,”
A.
Pfeiffer
F.
Guran
and
K.
Popp
, eds.,
Dynamics and Friction: Modeling, Analysis, and Experiment
,
World Scientific
,
Singapore
.
4.
Wang
,
Y.
, 1996, “
An Analytical Solution for Periodic Response of Elastic-Friction Damped Systems
,”
J. Sound Vib.
0022-460X,
189
(
3
), pp.
299
313
(1996).
5.
Guillen
J.
, and
Pierre
,
Ch.
, 1996, “
Analysis of the Forced Response of Dry-Friction Damped Structural Systems Using an Efficient Hybrid Frequency-Time Method
,”
Nonlinear Dynamics and Controls
,
A. K.
Bajaj
,
N. S.
Namachchivya
, and
M. A.
Franchek
, eds., ASME DE-Vol.
91
, pp.
41
50
, presented at the 1966 ASME International Mechanical Engineering Congress and Exposition, Atlanta, Nov. 17–22.
6.
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
, 1996, “
Modeling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
193
(
2
), pp.
511
524
.
7.
Ferri
,
A. A.
, and
Heck
,
B. S.
, 1998, “
Vibration Analysis of Dry Damped Turbine Blades Using Singular Perturbation Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
588
595
.
8.
Mook
,
D. T.
, 2002 private communication.
9.
Filippi
,
S.
,
Akay
,
A.
,
May
,
A.
, and
Gola
,
M. M.
, 2004, “
Measurement of Tangential Contact Hysteresis During Microslip
,”
Trans. ASME, J. Tribol.
0742-4787,
126
(
3
), pp.
482
489
.
10.
Ibrahim
,
R. A.
,
Madhavan
,
S.
,
Qiao
,
S. L.
, and
Chang
,
W. K.
, 2000, “
Experimental Investigation of Friction-Induced Noise in Disc Brake Systems
,”
Int. J. Veh. Des.
0143-3369,
23
(
3–4
), pp.
218
240
.
11.
Osetreich
,
M.
,
Hinrichs
,
N.
, and
Popp
,
K.
, 1998, “
On the Modeling of Friction Oscillator
,”
J. Sound Vib.
0022-460X,
216
(
3
), pp.
435
459
.
12.
Polycarpou
,
A.
, and
Soom
,
A.
, 1992, “
Transitions Between Sticking and Slipping at Lubricated Line Contacts
,”
R. A.
Ibrahim
and
A.
Soom
, eds.,
Friction-Induced Vibration, Chatter, Squeal, and Chaos, ASME Winter Annual Meeting
,
Anaheim, CA
, Nov. 8–13, Vol.
49
, pp.
139
148
.
13.
Liang
,
J.-W.
, and
Feeny
,
B. F.
, 1998, “
A Comparison Between Direct and Indirect Friction Measurements in a Forced Oscillator
,”
ASME J. Appl. Mech.
0021-8936,
65
(
3
), pp.
783
786
.
14.
Beck
,
J.
, and
Arnold
,
K.
, 1977,
Parameter Identification in Engineering and Science
,
Wiley and Sons
,
New York
.
15.
Helmholtz
,
H. L. F.
, 1877,
On the Sensations of Tone as Physiological Basis for the Theory of Music
,
Dover
,
New York
.
16.
Lord
,
Rayleigh
, 1896,
The Theory of Sound
, Vol.
1
,
Dover
,
New York
, reprinted in 1945.
17.
Lorenz
,
H.
, 1924,
Lehrbuch der Technischen Physik. Erster Band: Technische Mechanik Starrer Gebilde
,
Verlag von Julius Springer
,
Berlin
.
18.
Watari
,
A.
, 1969,
Kikai-rikigaku
,
Kyoritsu Shuppan
,
Tokyo
.
19.
Feeny
,
B. F.
, and
Liang
,
J. W.
, 1996, “
A Decrement Method for the Simultaneous Estimation of Coulomb and Viscous Friction
,”
J. Sound Vib.
0022-460X,
195
(
1
), pp.
149
154
.
20.
Liang
,
J.-W.
, and
Feeny
,
B. F.
, 1998, “
Identifying Coulomb and Viscous Friction From Free-Vibration Decrements
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
337
347
.
21.
Förster
,
F.
, 1937, “
Ein neues Messverfahren zur Bestimmung des Elazitätsmodules und der Dämpfung
,”
Z. Metallkd.
0044-3093,
29
, pp.
109
115
.
22.
Ewins
,
D. J.
, 1984,
Modal Testing: Theory and Practice
,
Research Studies
,
Letchworth, UK
.
23.
Cusumano
,
J. P.
, and
Kimble
,
B.
, 1994,
Experimental Observation of Basins of Attraction and Homoclinic Bifurcation in a Magneto-Mechanical Oscillator
,
Nonlinearity and Chaos in Engineering Dynamics
,
John Wiley and Sons
,
Chichester
, pp.
71
89
.
24.
Nichols
,
J. M.
,
Virgin
,
L. N.
, and
Gavin
,
H. P.
, 2001, “
Damping Estimates from Experimental Nonlinear Time Series
,”
J. Sound Vib.
0022-460X,
246
(
5
), pp.
815
827
.
25.
Stanway
,
R.
,
Sproston
,
J. L.
, and
Stevens
,
N. G.
, 1985, “
A Note on Parameter Estimation in Nonlinear Vibrating Systems
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
199
(
1
), pp.
79
84
.
26.
Yao
,
G. Z.
,
Meng
,
G.
, and
Fang
,
T.
, 1997, “
Parameter Estimation and Damping Performance of Electro-Rheological Dampers
,”
J. Sound Vib.
0022-460X,
204
(
4
), pp.
575
584
.
27.
Tomlinson
,
G. R.
, 1980, “
An Analysis of the Distortion Effects of Coulomb Damping on the Vector Plots of Lightly Damped System
,”
J. Sound Vib.
0022-460X,
71
(
3
), pp.
443
451
.
28.
Chen
,
Q.
, and
Tomlinson
,
G. R.
, 1996, “
Parametric Identification of Systems With Dry Friction and Nonlinear Stiffness Using a Time Series Model
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
252
263
.
29.
Duval
,
L.
,
Iourtchenko
,
D. V.
, and
Dimentberg
,
M. F.
, 2000, “
The Damping Identification for certain sdof systems
,”
Proceedings of the SECTAM-XX, Developments in Theoretical and Applied Mechanics
,
Callaway Gardens
,
Pine Mountain, GA
, Apr. 16–18, pp.
535
538
.
30.
Dimentberg
,
M. F.
, 1968, “
Determination of Nonlinear Damping Function From Forced Vibration Test of a SDOF system
,”
Inzh. Zh., Mekh. Tverd. Tela
0541-4180,
2
, pp.
32
34
.
31.
Iourtchenko
,
D. V.
, and
Dimentberg
,
M. F.
, 2002, “
In-Service Identification of Nonlinear Damping From Measured Random Vibration
.”
J. Sound Vib.
0022-460X,
255
(
3
), pp.
549
554
.
32.
Liang
,
J.-W.
, and
Feeny
,
B. F.
, 2004, “
Identifying Coulomb and Viscous Damping in Forced Dual-Damped Oscillators
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
1
), pp.
118
125
.
33.
Hajj
,
M. R.
,
Fung
,
J.
,
Nayfeh
,
A. H.
, and
Fahey
,
S. O.
, 2000, “
Damping Identification Using Perturbation Techniques and Higher-Order Spectra
,”
Nonlinear Dyn.
0924-090X,
23
(
2
), pp.
189
203
.
34.
Liu
,
H.
,
Liu
,
B.
,
Yuan
,
D.
, and
Rao
,
J.
, 2007, “
Identification for Sucker-Rod Pumping System’s Damping Coefficients Based on Chain Code Method of Pattern Recognition
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
4
), pp.
434
440
.
35.
Delgado
,
A.
, and
San Andrés
,
L.
, 2007, “
Identification of Structural Stiffness and Damping Coefficients of a Shoed-Brush Seal
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
5
),
648
655
.
36.
Tomlinson
,
G. R.
, and
Hibbert
,
J. H.
, 1979, “
Identification of the Dynamic Characteristics of a Structure With Coulomb Friction
,”
J. Sound Vib.
0022-460X,
64
(
2
), pp.
233
242
.
37.
Liang
,
J.-W.
, and
Feeny
,
B. F.
, 2006, “
Balancing Energy to Estimate Damping Parameters in Forced Oscillators
,”
J. Sound Vib.
0022-460X,
295
(
3–5
), pp.
988
998
.
38.
Yuan
,
C. M.
, and
Feeny
,
B. F.
, 1998, “
Parametric Identification of Chaotic Systems
,”
J. Vib. Control
1077-5463,
4
(
4
), pp.
405
426
.
39.
Liang
,
J.-W.
, 2007, “
Damping Estimation via Energy-Dissipation Method
,”
J. Sound Vib.
0022-460X,
307
(
1–2
), pp.
949
364
.
40.
Liang
,
Y.
, 2005, “
Parametric Identification of Chaotic/Nonlinear Systems and Reduced Order Models Based on Proper Orthogonal Decomposition
,” Ph.D. thesis, Michigan State University, East Lansing.
41.
Feeny
,
B. F.
, 2007, “
Estimating Damping Parameters in Multi-Degree-of-Freedom Vibration Systems by Balancing Energy
,”
Proceedings of the 2007 ASME International Design Engineering Technical Conferences
,
Las Vegas
, Sept. 4–7, Paper No. VIB-35340.
42.
Lumley
,
J. L.
, 1970
Stochastic Tools in Turbulence
,
Academic
,
New York
.
43.
FitzSimons
,
P. M.
, and
Rui
,
C.
, 1993, “
Determining Low Dimensional Models of Distributed Systems
,” Advances in Robust and Nonlinear Control Systems, ASME-DSC53:9-15.
44.
Spottswood
,
M.
, and
Allemang
,
R. J.
, 2006, “
Identification of Nonlinear Parameters for Reduced Order Models
,”
J. Sound Vib.
0022-460X,
295
(
1–2
), pp.
226
245
.
45.
Spottswood
,
M.
, and
Allemang
,
R. J.
, 2007, “
On the Investigation of Some Parameter Identification and Experimental Modal Filtering Issues for Nonlinear Reduced Order Models
,”
Exp. Mech.
0014-4851,
43
(
4
), pp.
511
521
.
46.
Amabili
,
M.
,
Sarkar
,
A.
, and
Päidoussis
,
M. P.
, 2003, “
Reduced-Order Models for Nonlinear Vibrations of Cylindrical Shells via the Proper Orthogonal Decomposition Method
,”
J. Fluids Struct.
0889-9746,
18
(
2
), pp.
227
250
.
47.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
, 2003,
Identification of a Continuous Structure with a Geometrical Non-Linearity. Part II: Proper Orthogonal Decomposition
J. Sound Vib.
0022-460X,
262
(
4
), pp.
907
919
.
48.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
, 2003, “
ECL Benchmark: Application of the Proper Orthogonal Decomposition
,”
Mech. Syst. Signal Process.
0888-3270,
17
(
1
), pp.
237
242
.
49.
Epureanu
,
B. I.
,
Tang
,
L. S. S.
, and
Paidoussis
,
M. P.
, 2004, “
Coherent Structures and Their Influence on the Dynamics of Aeroelastic Panels
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
6
), pp.
977
991
.
50.
Feeny
,
B.
, and
Kappagantu
,
R.
, 1998, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
0022-460X,
211
(
4
), pp.
607
616
.
51.
Kerschen
,
G.
and
Golinval
,
J. C.
, 2002, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
0022-460X,
249
(
5
), pp.
849
865
.
52.
Feeny
,
B. F.
, 2002, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
1
), pp.
157
160
.
53.
Feeny
,
B. F.
and
Liang
,
Y.
, 2003, “
Interpreting Proper Orthogonal Modes in Randomly Excited Vibration Systems
,”
J. Sound Vib.
0022-460X,
265
(
5
), pp.
953
966
.
54.
Feeny
,
B. F.
, 2002, “
On Proper Orthogonal Coordinates as Indicators of Modal Activity
,”
J. Sound Vib.
0022-460X,
255
(
5
), pp.
805
817
.
55.
Iemma
,
U.
,
Morino
,
L.
, and
Diez
,
M.
, 2006, “
Digital Holography and Karhunen–Loève Decomposition for the Modal Analysis of Two-Dimensional Vibrating Structures
,”
J. Sound Vib.
0022-460X,
291
,
107
131
.
56.
Riaz
,
M. S.
, and
Feeny
,
B. F.
, 2003, “
Proper Orthogonal Decomposition of a Beam Sensed With Strain Gages
,”
ASME J. Vibr. Acoust.
0739-3717,
125
(
1
), pp.
129
131
.
You do not currently have access to this content.