A Bernoulli–Euler beam resting on a viscoelastic foundation subject to a platoon of moving dynamic loads can be used as a physical model to describe railways and highways under traffic loading. Vertical displacement, vertical velocity, and vertical acceleration responses of the beam are initially obtained in the frequency domain and then represented as integrations of complex function in the space-time domain. A bifurcation is found in critical speed against resonance frequency. When the dimensionless frequency is high, there is a single critical speed that increases as the dimensionless frequency increases. When the dimensionless frequency is low, there are two critical speeds. One speed increases as the dimensionless frequency increases, while the other speed decreases as the dimensionless frequency decreases. Based on the fast Fourier transform, numerical methods are developed for efficient computation of dynamic response of the beam.

1.
Fryba
,
L.
, 1977,
Vibration of Solids and Structures Under Moving Loads
,
Noordhoff International
,
Groningen, Netherlands
.
2.
Kenney
,
J. T.
, 1954, “
Steady State Vibrations of Beam on Elastic Foundation for Moving Loads
,”
ASME J. Appl. Mech.
0021-8936,
21
(
4
), pp.
359
364
.
3.
Steele
,
C. R.
, 1967, “
The Finite Beam With a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
34
(
1
), pp.
111
118
.
4.
Adams
,
G. G.
, and
Bogy
,
D. B.
, 1975, “
Steady Solutions for Moving Loads on Elastic Beams With One-Sided Constraints
,”
ASME J. Appl. Mech.
0021-8936,
91
(
4
), pp.
800
804
.
5.
Sun
,
L.
, 1996, “
Experimental and Theoretical Analysis of Dynamic Vehicle Loads and Stochastic Response of Pavement Systems Under Arbitrary Moving Loads
,” Ph.D. thesis, Southeast University, Nanjing, China.
6.
Sun
,
L.
, 2001, “
A Closed-Form Solution of Bernoulli-Euler Beam on Viscoelastic Foundation Under Harmonic Line Loads
,”
J. Sound Vib.
0022-460X,
242
(
4
), pp.
619
627
.
7.
Criner
,
H. E.
, and
McCann
,
G. D.
, 1953, “
Rails on Elastic Foundations Under the Influence of High-Speed Traveling Loads
,”
ASME J. Appl. Mech.
0021-8936,
20
(
1
), pp.
13
22
.
8.
Florence
,
A. L.
, 1965, “
Traveling Force on a Timoshenko Beam
,”
ASME J. Appl. Mech.
0021-8936,
32
(
2
), pp.
351
358
.
9.
Steele
,
C. R.
, 1968, “
The Timoshenko Beam With a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
35
(
3
), pp.
481
488
.
10.
Huang
,
C. C.
, 1977, “
Traveling Loads on a Viscoelastic Timoshenko Beam
,”
ASME J. Appl. Mech.
0021-8936,
44
(
1
), pp.
183
184
.
11.
Elattary
,
M. A.
, 1991, “
Moving Loads on an Infinite Plate Strip of Constant Thickness
,”
J. Phys. D: Appl. Phys.
0022-3727,
24
(
4
), pp.
541
546
.
12.
Lee
,
H. P.
, 1994, “
Dynamic Response of a Beam With Intermediate Point Constrains Subject to a Moving Load
,”
J. Sound Vib.
0022-460X,
171
(
3
), pp.
361
368
.
13.
Pan
,
G.
, and
Atluri
,
S. N.
, 1995, “
Dynamic Response of Finite Sized Elastic Runways Subjected to Moving Loads: A Coupled BEM/FEM Approach
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
(
18
), pp.
3143
3166
.
14.
Sun
,
L.
, and
Deng
,
X.
, 1998, “
Dynamic Analysis to Infinite Beam Under a Moving Line Load With Uniform Velocity
,”
Appl. Math. Mech.
0253-4827,
19
(
4
), pp.
367
373
.
15.
Sun
,
L.
, and
Greenberg
,
B.
, 2000, “
Dynamic Response of Linear Systems to Moving Stochastic Sources
,”
J. Sound Vib.
0022-460X,
229
(
4
), pp.
957
972
.
16.
Sun
,
L.
, and
Luo
,
F.
, 2008, “
Transient Wave Propagation in Multilayered Viscoelastic Media—Theory, Numerical Computation and Validation
,”
ASME J. Appl. Mech.
0021-8936,
75
(
3
), p.
031007
.
17.
Sun
,
L.
, 2007, “
Steady-State Dynamic Response of a Kirchhoff’s Slab on Viscoelastic Kelvin’s Foundations to Moving Harmonic Loads
,”
ASME J. Appl. Mech.
0021-8936,
74
(
13
), pp.
1212
1224
.
18.
Sun
,
L.
, and
Luo
,
F.
, 2007, “
Arrays of Dynamic Circular Loads Moving on an Infinite Plate
,”
Int. J. Numer. Methods Eng.
0029-5981,
71
(
6
), pp.
652
677
.
19.
Sun
,
L.
, 2006, “
Analytical Dynamic Displacement Response of Rigid Pavements to Moving Concentrated and Line Loads
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
4370
4383
.
20.
Sun
,
L.
, 2005, “
Dynamics of Plate Generated by Moving Harmonic Loads
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
772
777
.
21.
Sun
,
L.
, 2003, “
An Explicit Representation of Steady State Response of a Beam Resting on an Elastic Foundation to Moving Harmonic Line Loads
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
27
, pp.
69
84
.
22.
Zhu
,
X. Q.
,
Law
,
S. S.
, and
Bu
,
J. Q.
, 2006, “
A State Space Formulation for Moving Loads Identification
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
4
), pp.
509
520
.
23.
Chan
,
T. H. T.
, and
Ashebo
,
D. B.
, 2006, “
Moving Axle Load From Multi-Span Continuous Bridge: Laboratory Study
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
4
), pp.
521
526
.
24.
Lu
,
J. F.
, and
Jeng
,
D. S.
, 2006, “
Dynamic Response of a Circular Tunnel Embedded in a Saturated Poroelastic Medium Due to a Moving Load
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
6
), pp.
750
756
.
25.
Zhu
,
X. Q.
, and
Law
,
S. S.
, 2007, “
Damage Detection in Simply Supported Concrete Bridge Structure Under Moving Vehicular Loads
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
1
), pp.
58
65
.
26.
Chen
,
J. S.
, and
Yang
,
M. R.
, 2007, “
Vibration and Stability of a Shallow Arch Under a Moving Mass-Dashpot-Spring System
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
1
), pp.
66
72
.
27.
Cebon
,
D.
, 1999,
Handbook of Vehicle Road Interaction
,
Swets and Zeitlinger
,
London
.
28.
Deng
,
X.
, and
Sun
,
L.
, 2000,
Dynamics of Vehicle-Pavement Interaction
,
People’s Communication
,
Beijing
.
29.
Biggs
,
J. M.
,
Suer
,
H. S.
, and
Louw
,
J. M.
, 1957, “
Vibration of Simple-Span Highway Bridges
,”
J. Struct. Div.
0044-8001, ASCE,
124
, pp.
291
318
.
30.
Jezequel
,
L.
, 1981, “
Response of Periodic Systems to a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
48
(
3
), pp.
613
618
.
31.
Kim
,
S. M.
, and
Roesset
,
J. M.
, 1996, “
Dynamic Response of Pavement Systems to Moving Loads
,” Center for Transport Research, University of Texas at Austin, TX, Research Report No. 1422-2.
32.
Mulcahy
,
T. M.
, 1973, “
Steady-State Response of a Beam on Idealized Strain-Hardening Foundations for a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
42
(
4
), pp.
1040
1044
.
33.
Achenbach
,
J. D.
, and
Sun
,
C.
, 1965, “
Dynamic Response of Beam on Viscoelastic Subgrade
,”
J. Engrg. Mech. Div.
0044-7951, ASCE,
91
, pp.
61
76
.
34.
Choros
,
J.
, and
Adams
,
G. G.
, 1979, “
A Steadily Moving Load on an Elastic Beam Resting on a Tensionless Winkler Foundation
,”
ASME J. Appl. Mech.
0021-8936,
46
(
1
), pp.
175
180
.
35.
Saito
,
H.
, and
Terasawa
,
T.
, 1980, “
Steady-State Vibrations of a Beam on a Pasternak Foundation for Moving Loads
,”
ASME J. Appl. Mech.
0021-8936,
47
(
4
), pp.
879
883
.
36.
Gbadeyan
,
J. A.
, and
Dada
,
M. S.
, 2006, “
Dynamic Response of a Mindlin Elastic Rectangular Plate Under a Distributed Moving Mass
,”
Int. J. Mech. Sci.
0020-7403,
48
(
3
), pp.
323
340
.
37.
Wu
,
J. J.
, 2007, “
Use of Moving Distributed Mass Element for the Dynamic Analysis of a Flat Plate Undergoing a Moving Distributed Load
,”
Int. J. Numer. Methods Eng.
0029-5981,
71
(
3
), pp.
347
362
.
38.
Sun
,
L.
,
Kenis
,
W.
, and
Wang
,
W.
, 2006, “
Stochastic Spatial Excitation Induced by a Distributed Contact With Homogenous Gaussian Random Fields
,”
J. Engrg. Mech. Div.
0044-7951, ASCE,
132
(
7
), pp.
714
722
.
39.
Yoder
,
E. J.
, and
Witczak
,
M. W.
, 1975,
Principles of Pavement Design
,
Wiley
,
New York
.
You do not currently have access to this content.