Granular damping results from a combination of energy dissipation mechanisms including the impact and the friction between the vibrating structure and granules and among the granules. Although simple in concept, granular damping is very complicated and its performance depends on a number of factors, such as vibration level, granular material properties, packing ratio, etc. In this study, free vibration experiments are conducted on a cantilevered beam incorporated with granular damping. A signal analysis approach based on the Hilbert transform (HT) is then employed to identify the nonlinear damping characteristics from the acquired responses, such as the dependency of the natural frequency and damping ratio on the vibration level. This HT based analysis can produce an effective temporal-frequency amplitude∕energy analysis, which provides us with physical insights of the nonlinear transient response. A direct comparison between the granular damping and the impact damping (with single impactor to dissipate vibratory energy) is performed to highlight the difference between these two and the advantages of granular damping. Finally, the validity of the proposed approach is also examined by the successful prediction of vibration response using the extracted granular damping characteristics.

1.
Friend
,
R. D.
, and
Kinra
,
V. K.
, 2000, “
Particle Impact Damping
,”
J. Sound Vib.
0022-460X,
233
(
1
), pp.
93
118
.
2.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
Simulation and Characterization of Particle Damping in Transient Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
202
211
.
3.
Saeki
,
M.
, 2005, “
Analytical Study of Multi-Particle Damping
,”
J. Sound Vib.
0022-460X,
281
, pp.
1133
1144
.
4.
Flint
,
E. M.
, 1999, “
Experimental Measurements of the Particle Damping Effectiveness Under Centrifugal Loads
,”
Proceedings of the Fourth National Turbine Engine High Cycle Fatigue Conference
,
Monterey
, CA.
5.
Masri
,
S. F.
, and
Caughey
,
T. K.
, 1966, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
586
592
.
6.
Papalou
,
A.
, and
Masri
,
S. F.
, 1996, “
Performance of Particle Dampers Under Random Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
614
621
.
7.
Nayeri
,
R. D.
,
Masri
,
S. F.
, and
Caffrey
,
J. P.
, 2007, “
Studies of the Performance of Multi-Unit Impact Dampers Under Stochastic Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
239
251
.
8.
Popplewell
,
N.
, and
Semergicil
,
S. E.
, 1989, “
Performance of Bean Bag Impact Damper for a Sinusoidal External Force
,”
J. Sound Vib.
0022-460X,
133
(
2
), pp.
193
223
.
9.
Xu
,
Z. W.
,
Chan
,
K. W.
, and
Liao
,
W. H.
, 2004, “
An Empirical Method for Particle Damping Design
,”
Shock Vib.
1070-9622,
11
,
647
664
.
10.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
DEM Simulation of Particle Damping
,”
Powder Technol.
0032-5910,
142
, pp.
154
165
.
11.
Fang
,
X.
, and
Tang
,
J.
, 2006, “
A Highly Efficient Discrete Element Approach for Granular Damping Analysis
,”
Proceedings of SPIE Smart Structures∕Materials: Damping and Isolation
, Vol.
6169
, pp.
205
214
.
12.
Fang
,
X.
, and
Tang
,
J.
, 2006, “
Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
489
500
.
13.
Feldman
,
M.
, 1994, “
Non-Linear System Vibration Analysis Using Hilbert Transform-I. Free Vibration Analysis Method ‘FREEVIB’
,”
Mech. Syst. Signal Process.
0888-3270,
8
(
2
), pp.
119
127
.
14.
Feldman
,
M.
, 2005, “
Time-Varying and Non-Linear Dynamic System Identification Using the Hilbert Transform
,”
Proceedings of ASME VIB 2005: 20th Biennial Conference on Mechanical Vibration and Noise
,
Long Beach
, CA, Paper No. DETC2005–84644.
15.
Huang
,
N. E.
,
Zheng
,
S.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
, 1998, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
1364-5021,
454
, pp.
903
995
.
16.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
, 1999, “
A New View of Nonlinear Water Waves: The Hilbert Spectrum
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
417
457
.
17.
Schlurmann
,
T.
, 2002, “
Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
124
, pp.
22
27
.
18.
Zhang
,
R.
,
Ma
,
S.
,
Safak
,
E.
, and
Hartzell
,
S.
, 2003, “
Hilbert-Huang Transform Analysis of Dynamic and Earthquake Motion Recordings
,”
J. Eng. Mech.
0733-9399,
129
(
8
), pp.
861
875
.
19.
Pines
,
D.
, and
Salvino
,
L.
, 2006, “
Structural Health Monitoring Using Empirical Mode Decomposition and the Hilbert Phase
,”
J. Sound Vib.
0022-460X,
294
, pp.
97
124
.
20.
2005,
N. E.
Huang
and
S. S.
Shen
, eds.,
Hilbert-Huang Transform and Its Applications
,
World Scientific
,
Singapore
.
You do not currently have access to this content.